LTX-Video-0.9.1-HFIE / handler.py
jbilcke-hf's picture
jbilcke-hf HF staff
Update handler.py
f6dd4f3 verified
raw
history blame
9.7 kB
from typing import Dict, Any, Union, Optional, Tuple
import torch
from diffusers import LTXPipeline, LTXImageToVideoPipeline
from PIL import Image
import base64
import io
import tempfile
import random
import numpy as np
from moviepy.editor import ImageSequenceClip
import os
import logging
import asyncio
from varnish import Varnish
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
ENABLE_CPU_OFFLOAD = True
EXPERIMENTAL_STUFF = False
random.seed(0)
np.random.seed(0)
generator = torch.manual_seed(0)
# you can notice we don't use device=cuda, for more info see:
# https://huggingface.co/docs/diffusers/v0.16.0/en/using-diffusers/reproducibility#gpu
varnish = Varnish(
enable_mmaudio=False,
#mmaudio_config=mmaudio_config
)
class EndpointHandler:
# Default configuration
DEFAULT_FPS = 24
DEFAULT_DURATION = 4 # seconds
DEFAULT_NUM_FRAMES = (DEFAULT_DURATION * DEFAULT_FPS) + 1 # 97 frames
DEFAULT_NUM_STEPS = 25
DEFAULT_WIDTH = 768
DEFAULT_HEIGHT = 512
# Constraints
MAX_WIDTH = 1280
MAX_HEIGHT = 720
MAX_FRAMES = 257
def __init__(self, path: str = ""):
"""Initialize the LTX Video handler with both text-to-video and image-to-video pipelines.
Args:
path (str): Path to the model weights directory
"""
if EXPERIMENTAL_STUFF:
torch.backends.cuda.matmul.allow_tf32 = True
# Load both pipelines with bfloat16 precision as recommended in docs
self.text_to_video = LTXPipeline.from_pretrained(
path,
torch_dtype=torch.bfloat16
).to("cuda")
self.image_to_video = LTXImageToVideoPipeline.from_pretrained(
path,
torch_dtype=torch.bfloat16
).to("cuda")
if ENABLE_CPU_OFFLOAD:
self.text_to_video.enable_model_cpu_offload()
self.image_to_video.enable_model_cpu_offload()
self.varnish = Varnish(
device="cuda" if torch.cuda.is_available() else "cpu",
output_format="mp4",
output_codec="h264",
output_quality=23,
enable_mmaudio=False
)
def _validate_and_adjust_resolution(self, width: int, height: int) -> Tuple[int, int]:
"""Validate and adjust resolution to meet constraints.
Args:
width (int): Requested width
height (int): Requested height
Returns:
Tuple[int, int]: Adjusted (width, height)
"""
# Round to nearest multiple of 32
width = round(width / 32) * 32
height = round(height / 32) * 32
# Enforce maximum dimensions
width = min(width, self.MAX_WIDTH)
height = min(height, self.MAX_HEIGHT)
# Enforce minimum dimensions
width = max(width, 32)
height = max(height, 32)
return width, height
def _validate_and_adjust_frames(self, num_frames: Optional[int] = None, fps: Optional[int] = None) -> Tuple[int, int]:
"""Validate and adjust frame count and FPS to meet constraints.
Args:
num_frames (Optional[int]): Requested number of frames
fps (Optional[int]): Requested frames per second
Returns:
Tuple[int, int]: Adjusted (num_frames, fps)
"""
# Use defaults if not provided
fps = fps or self.DEFAULT_FPS
num_frames = num_frames or self.DEFAULT_NUM_FRAMES
# Adjust frames to be in format 8k + 1
k = (num_frames - 1) // 8
num_frames = (k * 8) + 1
# Enforce maximum frame count
num_frames = min(num_frames, self.MAX_FRAMES)
return num_frames, fps
async def process_and_encode_video(
self,
frames: torch.Tensor,
fps: int,
upscale_factor: int = 0,
enable_interpolation: bool = False,
interpolation_exp: int = 1
) -> tuple[str, dict]:
"""Process video frames using Varnish and return base64 encoded result"""
# Process video with Varnish
result = await self.varnish(
input_data=frames,
input_fps=fps,
output_fps=fps,
enable_upscale=upscale_factor > 1,
upscale_factor=upscale_factor,
enable_interpolation=enable_interpolation,
interpolation_exp=interpolation_exp
)
# Get video as data URI
video_data_uri = await result.write(
output_type="data-uri",
output_format="mp4",
output_codec="h264",
output_quality=23
)
metadata = {
"width": result.metadata.width,
"height": result.metadata.height,
"num_frames": result.metadata.frame_count,
"fps": result.metadata.fps,
"duration": result.metadata.duration
}
return video_data_uri, metadata
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""Process the input data and generate video using LTX.
Args:
data (Dict[str, Any]): Input data containing:
- prompt (str): Text description for video generation
- image (Optional[str]): Base64 encoded image for image-to-video generation
- width (Optional[int]): Video width (default: 768)
- height (Optional[int]): Video height (default: 512)
- num_frames (Optional[int]): Number of frames (default: 97)
- fps (Optional[int]): Frames per second (default: 24)
- num_inference_steps (Optional[int]): Number of inference steps (default: 25)
- guidance_scale (Optional[float]): Guidance scale (default: 7.5)
Returns:
Dict[str, Any]: Dictionary containing:
- video: video encoded in Base64 (h.264 MP4 video). This is a data-uri (prefixed with "data:").
- content-type: MIME type of the video (right now always "video/mp4")
- metadata: Dictionary with actual values used for generation
"""
prompt = data.get("inputs", None)
if not prompt:
raise ValueError("No prompt provided in the 'inputs' field")
# Get generation parameters
width = data.get("width", self.DEFAULT_WIDTH)
height = data.get("height", self.DEFAULT_HEIGHT)
width, height = self._validate_and_adjust_resolution(width, height)
num_frames = data.get("num_frames", self.DEFAULT_NUM_FRAMES)
fps = data.get("fps", self.DEFAULT_FPS)
num_frames, fps = self._validate_and_adjust_frames(num_frames, fps)
# Get post-processing parameters
upscale_factor = data.get("upscale_factor", 0)
enable_interpolation = data.get("enable_interpolation", False)
interpolation_exp = data.get("interpolation_exp", 1)
guidance_scale = data.get("guidance_scale", 7.5)
num_inference_steps = data.get("num_inference_steps", self.DEFAULT_NUM_STEPS)
seed = data.get("seed", -1)
seed = random.randint(0, 2**32 - 1) if seed == -1 else int(seed)
try:
with torch.no_grad():
random.seed(seed)
np.random.seed(seed)
generator.manual_seed(seed)
generation_kwargs = {
"prompt": prompt,
"height": height,
"width": width,
"num_frames": num_frames,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"output_type": "pt",
"generator": generator
}
# Generate frames using appropriate pipeline
image_data = data.get("image")
if image_data:
if image_data.startswith('data:'):
image_data = image_data.split(',', 1)[1]
image_bytes = base64.b64decode(image_data)
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
generation_kwargs["image"] = image
frames = self.image_to_video(**generation_kwargs).frames
else:
frames = self.text_to_video(**generation_kwargs).frames
# Process and encode video
video_data_uri, metadata = await self.process_and_encode_video(
frames=frames,
fps=fps,
upscale_factor=upscale_factor,
enable_interpolation=enable_interpolation,
interpolation_exp=interpolation_exp
)
# Add generation metadata
metadata.update({
"num_inference_steps": num_inference_steps,
"seed": seed,
"upscale_factor": upscale_factor,
"interpolation_enabled": enable_interpolation,
"interpolation_exp": interpolation_exp
})
return {
"video": video_data_uri,
"content-type": "video/mp4",
"metadata": metadata
}
except Exception as e:
logger.error(f"Error generating video: {str(e)}")
raise RuntimeError(f"Error generating video: {str(e)}")