coedit-base / README.md
jbochi's picture
Update README.md
bef93f1
|
raw
history blame
2.85 kB
metadata
license: apache-2.0
base_model: google/flan-t5-base
datasets:
  - grammarly/coedit
tags:
  - generated_from_trainer
  - text-generation-inference
metrics:
  - rouge
model-index:
  - name: coedit-base
    results: []
language:
  - en
widget:
  - text: >-
      Fix the grammar: When I grow up, I start to understand what he said is
      quite right.
    example_title: Fluency
  - text: >-
      Make this text coherent: Their flight is weak. They run quickly through
      the tree canopy.
    example_title: Coherence
  - text: >-
      Rewrite to make this easier to understand: A storm surge is what
      forecasters consider a hurricane's most treacherous aspect.
    example_title: Simplification
  - text: 'Paraphrase this: Do you know where I was born?'
    example_title: Paraphrase
  - text: >-
      Write this more formally: omg i love that song im listening to it right
      now
    example_title: Formalize
  - text: 'Write in a more neutral way: The authors'' exposé on nutrition studies.'
    example_title: Neutralize

coedit-base

This model is a fine-tuned version of google/flan-t5-base on the CoEdIT dataset.

It achieves the following results on the evaluation set:

  • Loss: 0.5978
  • Rouge1: 60.5931
  • Rouge2: 48.0165
  • Rougel: 57.8997
  • Rougelsum: 57.9335
  • Gen Len: 16.6729

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
0.7478 1.0 6908 0.6452 59.7569 46.3099 56.4301 56.4464 16.6268
0.7127 2.0 13816 0.6086 60.2082 47.27 57.2356 57.2531 16.6513
0.7136 3.0 20724 0.6059 60.3747 47.6257 57.595 57.6184 16.6349
0.7038 4.0 27632 0.5999 60.5075 47.7856 57.7316 57.7698 16.6735
0.6911 5.0 34540 0.5978 60.5931 48.0165 57.8997 57.9335 16.6729

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.7
  • Tokenizers 0.15.0