results_bert_full / README.md
jco1's picture
jco1/causality_bert_v2
dcb2cd6 verified
|
raw
history blame
2.13 kB
metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: results_bert_full
    results: []

results_bert_full

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5038
  • Accuracy: 0.876
  • F1: 0.8654

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.4682 1.0 500 0.3929 0.838 0.8325
0.4017 2.0 1000 0.4347 0.833 0.7715
0.3825 3.0 1500 0.6541 0.779 0.7984
0.3609 4.0 2000 0.4493 0.851 0.8484
0.3404 5.0 2500 0.4276 0.843 0.7941
0.3184 6.0 3000 0.3935 0.864 0.8509
0.2792 7.0 3500 0.3839 0.867 0.8519
0.2919 8.0 4000 0.5530 0.855 0.8216
0.2404 9.0 4500 0.5326 0.865 0.8603
0.2139 10.0 5000 0.5038 0.876 0.8654

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0