results_bert_full / README.md
jco1's picture
jco1/causality_bert_v3
b4e1888 verified
metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: results_bert_full
    results: []

results_bert_full

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4327
  • Accuracy: 0.8533
  • F1: 0.8517

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 450 0.4571 0.8367 0.7623
0.4531 2.0 900 0.4590 0.8367 0.7623
0.4643 3.0 1350 0.4480 0.8367 0.7623
0.4537 4.0 1800 0.4498 0.8367 0.7623
0.4508 5.0 2250 0.4466 0.8367 0.7623
0.4531 6.0 2700 0.4467 0.8367 0.7623
0.4553 7.0 3150 0.4498 0.8367 0.7623
0.4388 8.0 3600 0.4473 0.8367 0.7623
0.3981 9.0 4050 0.3563 0.8722 0.8472
0.2981 10.0 4500 0.4327 0.8533 0.8517

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0