distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5991
  • Accuracy: 0.83

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1211 1.0 57 1.9967 0.4
1.6311 2.0 114 1.5599 0.58
1.2082 3.0 171 1.2194 0.72
1.1853 4.0 228 1.0276 0.75
0.7278 5.0 285 0.9232 0.78
0.6999 6.0 342 0.7392 0.82
0.4983 7.0 399 0.6779 0.84
0.5142 8.0 456 0.6483 0.83
0.417 9.0 513 0.6554 0.82
0.3725 10.0 570 0.5991 0.83

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
10
Inference Providers NEW
Inference Providers available for this model are disabled. Settings

Model tree for jensg/distilhubert-finetuned-gtzan

Finetuned
(458)
this model

Dataset used to train jensg/distilhubert-finetuned-gtzan

Evaluation results