jermyn's picture
End of training
eba7cbd verified
|
raw
history blame
5.12 kB
metadata
license: other
library_name: peft
tags:
  - axolotl
  - generated_from_trainer
base_model: deepseek-ai/deepseek-coder-1.3b-instruct
model-index:
  - name: deepseek-code-1.3b-inst-NLQ2Cypher
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: deepseek-ai/deepseek-coder-1.3b-instruct
# base_model: Qwen/CodeQwen1.5-7B-Chat
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
is_mistral_derived_model: false

load_in_8bit: false
load_in_4bit: true
strict: false

lora_fan_in_fan_out: false
data_seed: 49
seed: 49

datasets:
  - path: sample_data/alpaca_synth_cypher.jsonl
    type: sharegpt
    conversation: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./qlora-alpaca-deepseek-1.3b-inst
# output_dir: ./qlora-alpaca-out

# hub_model_id: jermyn/CodeQwen1.5-7B-Chat-NLQ2Cypher
hub_model_id: jermyn/deepseek-code-1.3b-inst-NLQ2Cypher

adapter: qlora
lora_model_dir:

sequence_len: 896
sample_packing: false
pad_to_sequence_len: true

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

# If you added new tokens to the tokenizer, you may need to save some LoRA modules because they need to know the new tokens.
# For LLaMA and Mistral, you need to save `embed_tokens` and `lm_head`. It may vary for other models.
# `embed_tokens` converts tokens to embeddings, and `lm_head` converts embeddings to token probabilities.
# https://github.com/huggingface/peft/issues/334#issuecomment-1561727994
# lora_modules_to_save:
#   - embed_tokens
#   - lm_head

wandb_project: fine-tune-axolotl
wandb_entity: jermyn

gradient_accumulation_steps: 1
micro_batch_size: 16
eval_batch_size: 16
num_epochs: 6
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
max_grad_norm: 1.0
adam_beta2: 0.95
adam_epsilon: 0.00001

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
# saves_per_epoch: 6
save_steps: 10
save_total_limit: 3
debug:
weight_decay: 0.0
fsdp:
fsdp_config:
# special_tokens:
#   bos_token: "<s>"
#   eos_token: "</s>"
#   unk_token: "<unk>"
save_safetensors: true

deepseek-code-1.3b-inst-NLQ2Cypher

This model is a fine-tuned version of deepseek-ai/deepseek-coder-1.3b-instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4051

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 49
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss
1.8723 0.1429 1 1.6354
1.9222 0.2857 2 1.6278
1.7642 0.5714 4 1.5956
1.8259 0.8571 6 1.4414
1.334 1.1429 8 1.0972
0.9019 1.4286 10 0.8305
0.5977 1.7143 12 0.6896
0.621 2.0 14 0.6125
0.3513 2.2857 16 0.5361
0.2399 2.5714 18 0.4976
0.1689 2.8571 20 0.4783
0.192 3.1429 22 0.4579
0.1873 3.4286 24 0.4330
0.1426 3.7143 26 0.4143
0.0909 4.0 28 0.4106
0.1129 4.2857 30 0.4111
0.1584 4.5714 32 0.4084
0.1479 4.8571 34 0.4041
0.122 5.1429 36 0.4086
0.1212 5.4286 38 0.4064
0.1464 5.7143 40 0.4097
0.0915 6.0 42 0.4051

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.1
  • Pytorch 2.1.2+cu118
  • Datasets 2.19.1
  • Tokenizers 0.19.1