|
--- |
|
base_model: jh8416/my_ewha_model_2024_1 |
|
datasets: [] |
|
language: [] |
|
library_name: sentence-transformers |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:97764 |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: 미디어 언어 중간시험 중간시험 강평 제부 |
|
sentences: |
|
- 적분의 정의교육관B동 호 교시이 강의에서는 리만적분의 정의와 유용한 여러 가지 적분법 |
|
- 창립 주년 기념일 성격심리학 입문 제부 성향적 영역 제부 성향적 영역 |
|
- career paths for the DIS graduates Ewha cyber campus How to |
|
- source_sentence: hierarchies through relationality in the ethics of care International |
|
Journal of |
|
sentences: |
|
- economy culture and law to ethics |
|
- Instructor Bae Movie WIT Values ethics and advocacy Lecture group discussion |
|
- 깊이 이해할 수 있는 지름길일 것입니다 |
|
- source_sentence: 주차별 강의 내용은 사정에 따라 변동될 |
|
sentences: |
|
- 조순경 여성직종의 외주화와 간접차별 KTX 승무원 간접고용을 통해 본 |
|
- 욕구를 만족시키기 위해 기본적인 마케팅전략의 개념과 이론을 학습하고 여러 성공적인 마케팅전략의 |
|
- 속 리더십 성공사례 연구 내용 정신전력교육구술평가 임관종합평가 대비 정신전력 교육 조직속에서 |
|
- source_sentence: 상형미를 기반으로 하는 조형미를 이해하여 궁극적으로는 서화동원을 이해하고 동양예술에서 추구한 획과 |
|
sentences: |
|
- 장흔들리는 마음 수업자료스타트업얼라이언스가이드북시리즈초보창업자를위한 HR가이드북 부 장초기 단계 재무관리 핵심 공략 장초기 |
|
- 중간시험 리만적분 연습문제 |
|
- 같은 다층적이며 종합적인 접근을 통해 궁극적으로는 생태계가 유지되고 작동하는 원리 그리고 |
|
- source_sentence: 제작 과정 이해 및 실습 석고 몰드 캐스팅 기법을 이용한 개별 |
|
sentences: |
|
- 선거 Mould 제작 Slip Casting 석고원형 제작 원형완성 및 검사 Project |
|
- 역사적 고찰 세기 교수법 초급 피아노 교수법 기초 및 유아과정 중급 |
|
- 발전과제 학교문화와 풍토 주교재 장 학교문화의 개념 및 특징 조직문화 이론Ouchi의 |
|
--- |
|
|
|
# SentenceTransformer based on jh8416/my_ewha_model_2024_1 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jh8416/my_ewha_model_2024_1](https://huggingface.co/jh8416/my_ewha_model_2024_1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [jh8416/my_ewha_model_2024_1](https://huggingface.co/jh8416/my_ewha_model_2024_1) <!-- at revision b97ea2a0717427f085226fd9284f2d5b4a7c1b8c --> |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("jh8416/my_ewha_model_2024_1") |
|
# Run inference |
|
sentences = [ |
|
'제작 과정 이해 및 실습 석고 몰드 캐스팅 기법을 이용한 개별', |
|
'선거 Mould 제작 Slip Casting 석고원형 제작 원형완성 및 검사 Project', |
|
'발전과제 학교문화와 풍토 주교재 장 학교문화의 개념 및 특징 조직문화 이론Ouchi의', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 97,764 training samples |
|
* Columns: <code>sentence_0</code> and <code>sentence_1</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 17.88 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 18.09 tokens</li><li>max: 41 tokens</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | |
|
|:------------------------------------------------------|:-------------------------------------------------------------| |
|
| <code>자신을 닫아놓으면서도 다른 한 편으론 보석처럼 반짝이는 돌은 매력이 있다</code> | <code>작품의 용도 설정 보석함 필구함 기타 IV</code> | |
|
| <code>자신을 닫아놓으면서도 다른 한 편으론 보석처럼 반짝이는 돌은 매력이 있다</code> | <code>발표 및 제출인쇄물A포맷 도안밑그림 이미지 크기보석함과 기타 함의 크기를 기준으로 함</code> | |
|
| <code>자신을 닫아놓으면서도 다른 한 편으론 보석처럼 반짝이는 돌은 매력이 있다</code> | <code>밑그림에 채색 및 기법 표시 보석함 크기외경 xx</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `num_train_epochs`: 1 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: no |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | |
|
|:------:|:----:|:-------------:| |
|
| 0.0818 | 500 | 1.0712 | |
|
| 0.1636 | 1000 | 0.9295 | |
|
| 0.2455 | 1500 | 0.8423 | |
|
| 0.3273 | 2000 | 0.8157 | |
|
| 0.4091 | 2500 | 0.794 | |
|
| 0.4909 | 3000 | 0.7058 | |
|
| 0.5727 | 3500 | 0.6726 | |
|
| 0.6546 | 4000 | 0.6664 | |
|
| 0.7364 | 4500 | 0.6302 | |
|
| 0.8182 | 5000 | 0.6029 | |
|
| 0.9000 | 5500 | 0.5936 | |
|
| 0.9818 | 6000 | 0.5873 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.12.0 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.43.3 |
|
- PyTorch: 2.4.0+cu121 |
|
- Accelerate: 0.33.0 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |