|
--- |
|
base_model: dmis-lab/biobert-v1.1 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: biobert-all-deep |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# biobert-all-deep |
|
|
|
This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8095 |
|
- Precision: 0.6591 |
|
- Recall: 0.7116 |
|
- F1: 0.6843 |
|
- Accuracy: 0.8236 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 363 | 0.5639 | 0.5973 | 0.6865 | 0.6388 | 0.8149 | |
|
| 0.6983 | 2.0 | 726 | 0.5410 | 0.6263 | 0.7052 | 0.6634 | 0.8238 | |
|
| 0.3859 | 3.0 | 1089 | 0.5557 | 0.6544 | 0.7011 | 0.6769 | 0.8245 | |
|
| 0.3859 | 4.0 | 1452 | 0.5803 | 0.6579 | 0.7064 | 0.6813 | 0.8276 | |
|
| 0.276 | 5.0 | 1815 | 0.6461 | 0.6598 | 0.7105 | 0.6842 | 0.8238 | |
|
| 0.1944 | 6.0 | 2178 | 0.6995 | 0.6616 | 0.7120 | 0.6859 | 0.8237 | |
|
| 0.1505 | 7.0 | 2541 | 0.7337 | 0.6563 | 0.7195 | 0.6865 | 0.8253 | |
|
| 0.1505 | 8.0 | 2904 | 0.7710 | 0.6664 | 0.7120 | 0.6884 | 0.8255 | |
|
| 0.1178 | 9.0 | 3267 | 0.8030 | 0.6541 | 0.7165 | 0.6838 | 0.8233 | |
|
| 0.1006 | 10.0 | 3630 | 0.8095 | 0.6591 | 0.7116 | 0.6843 | 0.8236 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.1 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|