metadata
license: other
base_model: black-forest-labs/FLUX.1-dev
tags:
- flux
- flux-diffusers
- text-to-image
- diffusers
- simpletuner
- lora
- template:sd-lora
inference: true
widget:
- text: unconditional (blank prompt)
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_0_0.png
- text: >-
Dr. Seuss during a book signing event, seated at a table with an open book
and pen in hand, his characteristic white beard, clear-rimmed glasses, and
whimsical bow tie complementing his calm, attentive expression, all within
the literary setting of a bookstore, reflecting his enduring connection
with readers and the joy his work brought to many.
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_1_0.png
- text: Anime picture of famed author Dr. Seuss in a Studio Ghibli style
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_2_0.png
- text: Dr. Seuss in a leather jacket riding a Harley Davidson Motorcycle
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_3_0.png
- text: >-
Famous author Dr. Seuss holding a chainsaw while riding around on a
unicycle, vintage TV still from the Dick Van Dyke show
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_4_0.png
- text: A photograph of Dr. Seuss riding in a horse-drawn carriage
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_5_0.png
flux-training-seuss-lora
This is a standard PEFT LoRA derived from black-forest-labs/FLUX.1-dev.
The main validation prompt used during training was:
A photograph of Dr. Seuss riding in a horse-drawn carriage
Validation settings
- CFG:
3.5
- CFG Rescale:
0.0
- Steps:
15
- Sampler:
None
- Seed:
42
- Resolution:
1024
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
- Training epochs: 0
- Training steps: 100
- Learning rate: 0.0008
- Effective batch size: 16
- Micro-batch size: 4
- Gradient accumulation steps: 4
- Number of GPUs: 1
- Prediction type: flow-matching
- Rescaled betas zero SNR: False
- Optimizer: adamw_bf16
- Precision: bf16
- Quantised: No
- Xformers: Not used
- LoRA Rank: 16
- LoRA Alpha: None
- LoRA Dropout: 0.1
- LoRA initialisation style: default
Datasets
default_dataset_arb
- Repeats: 100
- Total number of images: 4
- Total number of aspect buckets: 3
- Resolution: 1.5 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
default_dataset
- Repeats: 100
- Total number of images: 3
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
default_dataset_512
- Repeats: 100
- Total number of images: 4
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
default_dataset_576
- Repeats: 100
- Total number of images: 4
- Total number of aspect buckets: 1
- Resolution: 0.331776 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
default_dataset_640
- Repeats: 100
- Total number of images: 4
- Total number of aspect buckets: 1
- Resolution: 0.4096 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
default_dataset_704
- Repeats: 100
- Total number of images: 4
- Total number of aspect buckets: 1
- Resolution: 0.495616 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
default_dataset_768
- Repeats: 100
- Total number of images: 3
- Total number of aspect buckets: 1
- Resolution: 0.589824 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
default_dataset_832
- Repeats: 100
- Total number of images: 3
- Total number of aspect buckets: 1
- Resolution: 0.692224 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
default_dataset_896
- Repeats: 100
- Total number of images: 3
- Total number of aspect buckets: 1
- Resolution: 0.802816 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
default_dataset_960
- Repeats: 100
- Total number of images: 3
- Total number of aspect buckets: 1
- Resolution: 0.9216 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
Inference
import torch
from diffusers import DiffusionPipeline
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'jimmycarter/flux-training-seuss-lora'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)
prompt = "A photograph of Dr. Seuss riding in a horse-drawn carriage"
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
num_inference_steps=15,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1024,
height=1024,
guidance_scale=3.5,
).images[0]
image.save("output.png", format="PNG")