|
--- |
|
license: cc-by-nc-4.0 |
|
language: |
|
- en |
|
tags: |
|
- text-generation |
|
datasets: |
|
- stanford_alpaca |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
<br><br> |
|
|
|
<p align="center"> |
|
<img src="https://github.com/jina-ai/finetuner/blob/main/docs/_static/finetuner-logo-ani.svg?raw=true" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px"> |
|
</p> |
|
|
|
|
|
<p align="center"> |
|
<b>LLM Generation models trained by Jina AI, Finetuner team.</b> |
|
</p> |
|
|
|
This repo contains the full weights (16bit) for Falcon-7b |
|
fit on the [Code Alpaca](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k) dataset. |
|
|
|
## Reproduction |
|
This version of the weights was trained with the following hyperparameters: |
|
|
|
- Epochs: 6 |
|
- Batch size: 128 |
|
- Micro batch size: 8 |
|
- Learning rate: 3e-4 |
|
- Lora _r_: 8 |
|
- Lora target modules: query_key_value |
|
|
|
You can reproduce using this repository: |
|
|
|
https://github.com/jina-ai/jerboa |
|
|
|
Make sure you install requirements and finetune using this command using the following command: |
|
|
|
``` |
|
python finetune.py \ |
|
--base-model tiiuae/falcon-7b --lora-target-modules query_key_value \ |
|
--data-path sahil2801/CodeAlpaca-20k --output-dir ./lora-alpaca-code \ |
|
--batch-size 128 --micro-batch-size 8 --eval-limit 45 \ |
|
--eval-file code_eval.jsonl --wandb-project jerboa --wandb-log-model \ |
|
--wandb-watch gradients --num-epochs 6 |
|
``` |
|
|
|
Inference: |
|
|
|
```Python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
|
|
TOKENIZER_SOURCE = 'tiiuae/falcon-7b' |
|
BASE_MODEL = 'jinaai/falcon-7b-code-alpaca' |
|
DEVICE = "cuda" |
|
|
|
PROMPT = """ |
|
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
Write a for loop in python |
|
|
|
### Input: |
|
|
|
### Response: |
|
""" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
pretrained_model_name_or_path=BASE_MODEL, |
|
torch_dtype=torch.float16, |
|
trust_remote_code=True, |
|
device_map='auto', |
|
) |
|
|
|
model.eval() |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
TOKENIZER_SOURCE, |
|
trust_remote_code=True, |
|
padding_side='left', |
|
) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
inputs = tokenizer(PROMPT, return_tensors="pt") |
|
input_ids = inputs["input_ids"].to(DEVICE) |
|
input_attention_mask = inputs["attention_mask"].to(DEVICE) |
|
|
|
with torch.no_grad(): |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
attention_mask=input_attention_mask, |
|
return_dict_in_generate=True, |
|
max_new_tokens=32, |
|
eos_token_id=tokenizer.eos_token_id, |
|
) |
|
generation_output = generation_output.sequences[0] |
|
output = tokenizer.decode(generation_output, skip_special_tokens=True) |
|
|
|
print(output) |
|
|
|
``` |