Fix docs

#8
by Xenova HF staff - opened
Files changed (1) hide show
  1. modeling_clip.py +2 -2
modeling_clip.py CHANGED
@@ -410,7 +410,7 @@ class JinaCLIPModel(JinaCLIPPreTrainedModel):
410
  from convert_to_numpy
411
  device(`torch.device`, *optional*, defaults to None):
412
  Which torch.device to use for the computation
413
- normalize_embeddings(`bool`, *optional*, defaults to False):
414
  If set to true, returned vectors will have length 1. In that case,
415
  the faster dot-product (util.dot_score) instead of cosine similarity
416
  can be used
@@ -545,7 +545,7 @@ class JinaCLIPModel(JinaCLIPPreTrainedModel):
545
  from convert_to_numpy
546
  device(`torch.device`, *optional*, defaults to None):
547
  Which torch.device to use for the computation
548
- normalize_embeddings(`bool`, *optional*, defaults to False):
549
  If set to true, returned vectors will have length 1. In that case,
550
  the faster dot-product (util.dot_score) instead of cosine similarity
551
  can be used
 
410
  from convert_to_numpy
411
  device(`torch.device`, *optional*, defaults to None):
412
  Which torch.device to use for the computation
413
+ normalize_embeddings(`bool`, *optional*, defaults to True):
414
  If set to true, returned vectors will have length 1. In that case,
415
  the faster dot-product (util.dot_score) instead of cosine similarity
416
  can be used
 
545
  from convert_to_numpy
546
  device(`torch.device`, *optional*, defaults to None):
547
  Which torch.device to use for the computation
548
+ normalize_embeddings(`bool`, *optional*, defaults to True):
549
  If set to true, returned vectors will have length 1. In that case,
550
  the faster dot-product (util.dot_score) instead of cosine similarity
551
  can be used