Fix docs
#8
by
Xenova
HF staff
- opened
- modeling_clip.py +2 -2
modeling_clip.py
CHANGED
@@ -410,7 +410,7 @@ class JinaCLIPModel(JinaCLIPPreTrainedModel):
|
|
410 |
from convert_to_numpy
|
411 |
device(`torch.device`, *optional*, defaults to None):
|
412 |
Which torch.device to use for the computation
|
413 |
-
normalize_embeddings(`bool`, *optional*, defaults to
|
414 |
If set to true, returned vectors will have length 1. In that case,
|
415 |
the faster dot-product (util.dot_score) instead of cosine similarity
|
416 |
can be used
|
@@ -545,7 +545,7 @@ class JinaCLIPModel(JinaCLIPPreTrainedModel):
|
|
545 |
from convert_to_numpy
|
546 |
device(`torch.device`, *optional*, defaults to None):
|
547 |
Which torch.device to use for the computation
|
548 |
-
normalize_embeddings(`bool`, *optional*, defaults to
|
549 |
If set to true, returned vectors will have length 1. In that case,
|
550 |
the faster dot-product (util.dot_score) instead of cosine similarity
|
551 |
can be used
|
|
|
410 |
from convert_to_numpy
|
411 |
device(`torch.device`, *optional*, defaults to None):
|
412 |
Which torch.device to use for the computation
|
413 |
+
normalize_embeddings(`bool`, *optional*, defaults to True):
|
414 |
If set to true, returned vectors will have length 1. In that case,
|
415 |
the faster dot-product (util.dot_score) instead of cosine similarity
|
416 |
can be used
|
|
|
545 |
from convert_to_numpy
|
546 |
device(`torch.device`, *optional*, defaults to None):
|
547 |
Which torch.device to use for the computation
|
548 |
+
normalize_embeddings(`bool`, *optional*, defaults to True):
|
549 |
If set to true, returned vectors will have length 1. In that case,
|
550 |
the faster dot-product (util.dot_score) instead of cosine similarity
|
551 |
can be used
|