Jackmin108's picture
fix: device
65e9690
raw
history blame
33 kB
# Copyright (c) 2023, Tri Dao.
# Adapted from https://github.com/Dao-AILab/flash-attention/pull/556
import math
from functools import partial
import torch
import torch.nn as nn
from einops import rearrange, repeat
try:
from flash_attn import (
flash_attn_kvpacked_func,
flash_attn_qkvpacked_func,
flash_attn_varlen_kvpacked_func,
flash_attn_varlen_qkvpacked_func,
flash_attn_with_kvcache,
)
except ImportError:
flash_attn_varlen_qkvpacked_func, flash_attn_varlen_kvpacked_func = None, None
flash_attn_qkvpacked_func, flash_attn_kvpacked_func = None, None
flash_attn_with_kvcache = None
try:
from flash_attn.ops.fused_dense import ColumnParallelLinear, FusedDense, RowParallelLinear
except ImportError:
FusedDense, ColumnParallelLinear, RowParallelLinear = None, None, None
from .rotary import RotaryEmbedding
# From https://github.com/ofirpress/attention_with_linear_biases/blob/4b92f28a005ead2567abe2359f633e73e08f3833/fairseq/models/transformer.py#L742
def get_alibi_slopes(nheads):
def get_slopes_power_of_2(nheads):
start = 2 ** (-(2 ** -(math.log2(nheads) - 3)))
ratio = start
return [start * ratio**i for i in range(nheads)]
if math.log2(nheads).is_integer():
return get_slopes_power_of_2(nheads)
else:
closest_power_of_2 = 2 ** math.floor(math.log2(nheads))
return (
get_slopes_power_of_2(closest_power_of_2)
+ get_alibi_slopes(2 * closest_power_of_2)[0::2][: nheads - closest_power_of_2]
)
class FlashSelfAttention(nn.Module):
"""Implement the scaled dot product attention with softmax.
Arguments
---------
softmax_scale: The temperature to use for the softmax attention.
(default: 1/sqrt(d_keys) where d_keys is computed at
runtime)
attention_dropout: The dropout rate to apply to the attention
(default: 0.0)
"""
def __init__(
self,
causal=False,
softmax_scale=None,
attention_dropout=0.0,
window_size=(-1, -1),
alibi_slopes=None,
deterministic=False,
):
super().__init__()
assert flash_attn_varlen_qkvpacked_func is not None, "FlashAttention is not installed"
assert flash_attn_qkvpacked_func is not None, "FlashAttention is not installed"
self.causal = causal
self.softmax_scale = softmax_scale
self.drop = nn.Dropout(attention_dropout)
self.register_buffer("alibi_slopes", alibi_slopes, persistent=False)
self.window_size = window_size
self.deterministic = deterministic
def forward(self, qkv, causal=None, cu_seqlens=None, max_seqlen=None):
"""Implements the multihead softmax attention.
Arguments
---------
qkv: The tensor containing the query, key, and value.
If cu_seqlens is None and max_seqlen is None, then qkv has shape (B, S, 3, H, D).
If cu_seqlens is not None and max_seqlen is not None, then qkv has shape
(total, 3, H, D), where total is the sum of the sequence lengths in the batch.
causal: if passed, will override self.causal
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into qkv.
max_seqlen: int. Maximum sequence length in the batch.
Returns:
--------
out: (total, H, D) if cu_seqlens is not None and max_seqlen is not None,
else (B, S, H, D).
"""
assert qkv.dtype in [torch.float16, torch.bfloat16]
assert qkv.is_cuda
causal = self.causal if causal is None else causal
unpadded = cu_seqlens is not None
if self.alibi_slopes is not None:
self.alibi_slopes = self.alibi_slopes.to(torch.float32)
if unpadded:
assert cu_seqlens.dtype == torch.int32
assert max_seqlen is not None
assert isinstance(max_seqlen, int)
return flash_attn_varlen_qkvpacked_func(
qkv,
cu_seqlens,
max_seqlen,
self.drop.p if self.training else 0.0,
softmax_scale=self.softmax_scale,
causal=causal,
alibi_slopes=self.alibi_slopes,
window_size=self.window_size,
deterministic=self.deterministic,
)
else:
return flash_attn_qkvpacked_func(
qkv,
self.drop.p if self.training else 0.0,
softmax_scale=self.softmax_scale,
causal=causal,
alibi_slopes=self.alibi_slopes,
window_size=self.window_size,
deterministic=self.deterministic,
)
class FlashCrossAttention(nn.Module):
"""Implement the scaled dot product attention with softmax.
Arguments
---------
softmax_scale: The temperature to use for the softmax attention.
(default: 1/sqrt(d_keys) where d_keys is computed at
runtime)
attention_dropout: The dropout rate to apply to the attention
(default: 0.0)
"""
def __init__(
self,
causal=False,
softmax_scale=None,
attention_dropout=0.0,
alibi_slopes=None,
window_size=(-1, -1),
deterministic=False,
):
super().__init__()
assert flash_attn_varlen_kvpacked_func is not None, "FlashAttention is not installed"
assert flash_attn_kvpacked_func is not None, "FlashAttention is not installed"
self.causal = causal
self.softmax_scale = softmax_scale
self.drop = nn.Dropout(attention_dropout)
self.register_buffer("alibi_slopes", alibi_slopes, persistent=False)
self.window_size = window_size
self.deterministic = deterministic
def forward(
self,
q,
kv,
causal=None,
cu_seqlens=None,
max_seqlen=None,
cu_seqlens_k=None,
max_seqlen_k=None,
):
"""Implements the multihead softmax attention.
Arguments
---------
q: The tensor containing the query. (B, Sq, H, D)
kv: The tensor containing the key and value. (B, Sk, 2, H_k, D)
causal: if passed, will override self.causal
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into q.
max_seqlen: int. Maximum sequence length in the batch of q.
cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into kv.
max_seqlen_k: int. Maximum sequence length in the batch of k and v.
"""
assert q.dtype in [torch.float16, torch.bfloat16]
assert q.is_cuda and kv.is_cuda
causal = self.causal if causal is None else causal
unpadded = cu_seqlens is not None
if self.alibi_slopes is not None:
self.alibi_slopes = self.alibi_slopes.to(torch.float32)
if unpadded:
assert cu_seqlens.dtype == torch.int32
assert max_seqlen is not None
assert isinstance(max_seqlen, int)
assert cu_seqlens_k is not None
assert cu_seqlens_k.dtype == torch.int32
assert max_seqlen_k is not None
assert isinstance(max_seqlen, int)
return flash_attn_varlen_kvpacked_func(
q,
kv,
cu_seqlens,
cu_seqlens_k,
max_seqlen,
max_seqlen_k,
self.drop.p if self.training else 0.0,
softmax_scale=self.softmax_scale,
causal=causal,
alibi_slopes=self.alibi_slopes,
window_size=self.window_size,
deterministic=self.deterministic,
)
else:
batch_size, seqlen_q = q.shape[0], q.shape[1]
seqlen_k = kv.shape[1]
assert kv.shape[0] == batch_size and kv.shape[4] == q.shape[3]
return flash_attn_kvpacked_func(
q,
kv,
self.drop.p if self.training else 0.0,
causal=causal,
softmax_scale=self.softmax_scale,
alibi_slopes=self.alibi_slopes,
window_size=self.window_size,
deterministic=self.deterministic,
)
class SelfAttention(nn.Module):
"""Implement the scaled dot product attention with softmax.
Arguments
---------
softmax_scale: The temperature to use for the softmax attention.
(default: 1/sqrt(d_keys) where d_keys is computed at
runtime)
attention_dropout: The dropout rate to apply to the attention
(default: 0.0)
"""
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
super().__init__()
self.causal = causal
self.softmax_scale = softmax_scale
self.drop = nn.Dropout(attention_dropout)
def forward(self, qkv, causal=None, key_padding_mask=None):
"""Implements the multihead softmax attention.
Arguments
---------
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D)
causal: if passed, will override self.causal
key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
False means to mask out. (B, S)
"""
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
causal = self.causal if causal is None else causal
q, k, v = qkv.unbind(dim=2)
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
if key_padding_mask is not None:
padding_mask = torch.full(
(batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device
)
padding_mask.masked_fill_(key_padding_mask, 0.0)
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
if causal:
# "triu_tril_cuda_template" not implemented for 'BFloat16'
# So we have to construct the mask in float
causal_mask = torch.triu(
torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1
)
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
scores = scores + causal_mask.to(dtype=scores.dtype)
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
attention_drop = self.drop(attention)
output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
return output
class CrossAttention(nn.Module):
"""Implement the scaled dot product attention with softmax.
Arguments
---------
softmax_scale: The temperature to use for the softmax attention.
(default: 1/sqrt(d_keys) where d_keys is computed at
runtime)
attention_dropout: The dropout rate to apply to the attention
(default: 0.0)
"""
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
super().__init__()
self.causal = causal
self.softmax_scale = softmax_scale
self.drop = nn.Dropout(attention_dropout)
def forward(self, q, kv, causal=None, key_padding_mask=None):
"""Implements the multihead softmax attention.
Arguments
---------
q: The tensor containing the query. (B, Sq, H, D)
kv: The tensor containing the key and value. (B, Sk, 2, H_k, D)
causal: if passed, will override self.causal
key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
False means to mask out. (B, Sk)
"""
batch_size, seqlen_q = q.shape[0], q.shape[1]
causal = self.causal if causal is None else causal
seqlen_k = kv.shape[1]
assert kv.shape[0] == batch_size and kv.shape[4] == q.shape[3]
if kv.shape[3] != q.shape[2]: # MQA/GQA
kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
k, v = kv.unbind(dim=2)
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
if key_padding_mask is not None:
padding_mask = torch.full(
(batch_size, seqlen_k), -10000.0, dtype=scores.dtype, device=scores.device
)
padding_mask.masked_fill_(key_padding_mask, 0.0)
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
if causal:
# causal mask needs to take into account the difference between seqlen_q and seqlen_k
row_idx = rearrange(
torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1"
)
col_idx = torch.arange(seqlen_k, device=kv.device, dtype=torch.long)
sk = (
seqlen_k
if key_padding_mask is None
else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
)
causal_mask = col_idx > row_idx + sk - seqlen_q
scores = scores.masked_fill(causal_mask, -10000.0)
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
attention_drop = self.drop(attention)
output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
return output
class LinearResidual(nn.Linear):
"""Wrap nn.Linear to return the residual as well. For compatibility with FusedDense."""
def forward(self, input: torch.Tensor) -> torch.Tensor:
return super().forward(input), input
def _update_kv_cache(kv, inference_params, layer_idx):
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
# Pre-allocate memory for key-values for inference.
num_heads, head_dim = kv.shape[-2:]
if layer_idx not in inference_params.key_value_memory_dict:
kv_cache = torch.empty(
inference_params.max_batch_size,
inference_params.max_seqlen,
2,
num_heads,
head_dim,
dtype=kv.dtype,
device=kv.device,
)
inference_params.key_value_memory_dict[layer_idx] = kv_cache
else:
kv_cache = inference_params.key_value_memory_dict[layer_idx]
# Adjust key and value for inference
batch_start = inference_params.batch_size_offset
batch_end = batch_start + kv.shape[0]
sequence_start = inference_params.seqlen_offset
sequence_end = sequence_start + kv.shape[1]
assert batch_end <= kv_cache.shape[0]
assert sequence_end <= kv_cache.shape[1]
assert kv_cache is not None
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
return kv_cache[batch_start:batch_end, :sequence_end, ...]
class MHA(nn.Module):
"""Multi-head self-attention and cross-attention"""
def __init__(
self,
embed_dim,
num_heads,
num_heads_kv=None,
cross_attn=False,
qkv_proj_bias=True,
out_proj_bias=True,
dropout=0.0,
softmax_scale=None,
causal=False,
layer_idx=None,
dwconv=False,
rotary_emb_dim=0,
rotary_emb_base=10000.0,
rotary_emb_scale_base=None,
rotary_emb_interleaved=False,
use_alibi=False,
window_size=(-1, -1),
fused_bias_fc=False,
use_flash_attn=False,
return_residual=False,
checkpointing=False,
device=None,
dtype=None,
) -> None:
"""
num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads.
return_residual: whether to return the input x along with the output. This is for
performance reason: for post-norm architecture, returning the input allows us
to fuse the backward of nn.Linear with the residual connection.
"""
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.embed_dim = embed_dim
self.cross_attn = cross_attn
self.causal = causal
self.layer_idx = layer_idx
self.dwconv = dwconv
self.rotary_emb_dim = rotary_emb_dim
self.use_flash_attn = use_flash_attn
self.return_residual = return_residual
self.checkpointing = checkpointing
if use_alibi:
assert use_flash_attn, "ALiBi code path requires flash_attn"
alibi_slopes = torch.tensor(get_alibi_slopes(num_heads), device=device)
else:
alibi_slopes = None
if window_size != (-1, -1):
assert use_flash_attn, "Local (sliding window) attention code path requires flash_attn"
self.num_heads = num_heads
self.num_heads_kv = num_heads_kv if num_heads_kv is not None else num_heads
assert (
self.num_heads % self.num_heads_kv == 0
), "num_heads must be divisible by num_heads_kv"
assert self.embed_dim % num_heads == 0, "embed_dim must be divisible by num_heads"
self.head_dim = self.embed_dim // num_heads
qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
kv_dim = 2 * self.head_dim * self.num_heads_kv
if self.rotary_emb_dim > 0:
assert not cross_attn, "MHA with rotary embedding does not support cross-attention yet"
assert RotaryEmbedding is not None, "rotary_emb is not installed"
self.rotary_emb = RotaryEmbedding(
self.rotary_emb_dim,
base=rotary_emb_base,
scale_base=rotary_emb_scale_base,
interleaved=rotary_emb_interleaved,
device=device,
)
if fused_bias_fc and FusedDense is None:
raise ImportError("fused_dense is not installed")
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
linear_resid_cls = (
LinearResidual if not fused_bias_fc else partial(FusedDense, return_residual=True)
)
wqkv_cls = linear_cls if not self.return_residual else linear_resid_cls
inner_attn_cls = (
partial(FlashSelfAttention, alibi_slopes=alibi_slopes, window_size=window_size)
if use_flash_attn
else SelfAttention
)
inner_cross_attn_cls = (
partial(FlashCrossAttention, alibi_slopes=alibi_slopes, window_size=window_size)
if use_flash_attn
else CrossAttention
)
if not self.cross_attn:
self.Wqkv = wqkv_cls(embed_dim, qkv_dim, bias=qkv_proj_bias, **factory_kwargs)
else:
self.Wq = linear_cls(embed_dim, embed_dim, bias=qkv_proj_bias, **factory_kwargs)
self.Wkv = wqkv_cls(embed_dim, kv_dim, bias=qkv_proj_bias, **factory_kwargs)
if self.dwconv:
if self.num_heads_kv == self.num_heads:
self.dwconv_qkv = nn.Conv1d(
qkv_dim, qkv_dim, kernel_size=3, padding=2, groups=qkv_dim
)
else:
self.dwconv_q = nn.Conv1d(
embed_dim, embed_dim, kernel_size=3, padding=2, groups=embed_dim
)
self.dwconv_kv = nn.Conv1d(kv_dim, kv_dim, kernel_size=3, padding=2, groups=kv_dim)
self.inner_attn = inner_attn_cls(
causal=causal,
softmax_scale=softmax_scale,
attention_dropout=dropout,
)
self.inner_cross_attn = inner_cross_attn_cls(
causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout
)
self.out_proj = linear_cls(embed_dim, embed_dim, bias=out_proj_bias, **factory_kwargs)
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None):
dtype = self.out_proj.weight.dtype if dtype is None else dtype
device = self.out_proj.weight.device
return torch.empty(
batch_size,
max_seqlen,
2,
self.num_heads_kv,
self.head_dim,
dtype=dtype,
device=device,
)
def _update_kv_cache(self, kv, inference_params):
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
assert not self.dwconv, "Generation does not support dwconv yet"
assert self.layer_idx is not None, "Generation requires layer_idx in the constructor"
return _update_kv_cache(kv, inference_params, self.layer_idx)
def _apply_rotary_update_kvcache_attention(self, q, kv, inference_params):
"""
Fast path that combine 3 steps: apply rotary to Q and K, update kv cache, and apply attention.
q: (batch_size, seqlen_q, nheads, head_dim)
kv: (batch_size, seqlen_k, 2, nheads_kv, head_dim)
"""
assert inference_params is not None and inference_params.seqlen_offset > 0
assert self.use_flash_attn
if self.rotary_emb_dim > 0:
assert self.rotary_emb.scale is None, "This code path does not support xPos"
self.rotary_emb._update_cos_sin_cache(
inference_params.max_seqlen, device=q.device, dtype=q.dtype
)
rotary_cos, rotary_sin = self.rotary_emb._cos_cached, self.rotary_emb._sin_cached
else:
rotary_cos, rotary_sin = None, None
batch = q.shape[0]
kv_cache = inference_params.key_value_memory_dict[self.layer_idx][:batch]
cache_seqlens = (
inference_params.lengths_per_sample[:batch]
if inference_params.lengths_per_sample is not None
else inference_params.seqlen_offset
)
alibi_slopes = getattr(self.inner_cross_attn, "alibi_slopes", None)
context = flash_attn_with_kvcache(
q,
kv_cache[:, :, 0],
kv_cache[:, :, 1],
kv[:, :, 0],
kv[:, :, 1],
rotary_cos=rotary_cos,
rotary_sin=rotary_sin,
cache_seqlens=cache_seqlens,
softmax_scale=self.inner_cross_attn.softmax_scale,
causal=self.inner_cross_attn.causal,
rotary_interleaved=self.rotary_emb.interleaved if self.rotary_emb_dim > 0 else False,
alibi_slopes=alibi_slopes,
)
return context
def _update_kvcache_attention(self, q, kv, inference_params):
"""Write kv to inference_params, then do attention"""
if (
inference_params.seqlen_offset == 0
or flash_attn_with_kvcache is None
or not self.use_flash_attn
):
# TODO: this only uses seqlen_offset and not lengths_per_sample.
kv = self._update_kv_cache(kv, inference_params)
return self.inner_cross_attn(q, kv)
else:
batch = q.shape[0]
kv_cache = inference_params.key_value_memory_dict[self.layer_idx][:batch]
cache_seqlens = (
inference_params.lengths_per_sample[:batch]
if inference_params.lengths_per_sample is not None
else inference_params.seqlen_offset
)
alibi_slopes = getattr(self.inner_cross_attn, "alibi_slopes", None)
return flash_attn_with_kvcache(
q,
kv_cache[:, :, 0],
kv_cache[:, :, 1],
kv[:, :, 0],
kv[:, :, 1],
cache_seqlens=cache_seqlens,
softmax_scale=self.inner_cross_attn.softmax_scale,
causal=self.inner_cross_attn.causal,
alibi_slopes=alibi_slopes,
)
def forward(
self,
x,
x_kv=None,
key_padding_mask=None,
cu_seqlens=None,
max_seqlen=None,
mixer_subset=None,
inference_params=None,
cu_adapter_mask=None,
**kwargs,
):
"""
Arguments:
x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if
cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total
is the is the sum of the sequence lengths in the batch.
x_kv: (batch, seqlen, hidden_dim), only applicable for cross-attention. If None, use x.
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into x. Only applicable when using
FlashAttention.
max_seqlen: int. Maximum sequence length in the batch.
key_padding_mask: boolean mask, True means to keep, False means to mask out.
(batch, seqlen). Only applicable when not using FlashAttention.
mixer_subset: for cross-attention only. If not None, will take a subset of x
before applying the query projection. Useful for e.g., ViT where we only care
about the CLS token in the last layer.
inference_params: for generation. Adapted from Megatron-LM (and Apex)
https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470
"""
if cu_seqlens is not None:
assert max_seqlen is not None
assert key_padding_mask is None
assert self.use_flash_attn
assert not self.dwconv
if key_padding_mask is not None:
assert cu_seqlens is None
assert max_seqlen is None
assert not self.use_flash_attn
if inference_params is not None:
assert key_padding_mask is None
assert cu_seqlens is None and max_seqlen is None
assert not self.dwconv
kwargs = (
{"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen, **kwargs}
if self.use_flash_attn
else {"key_padding_mask": key_padding_mask, **kwargs}
)
seqlen_offset = (
0
if inference_params is None
else (
inference_params.lengths_per_sample
if inference_params.lengths_per_sample is not None
else inference_params.seqlen_offset
)
)
rotary_max_seqlen = (
inference_params.max_sequence_len if inference_params is not None else max_seqlen
)
batch, seqlen = x.shape[:2]
if not self.cross_attn and self.num_heads_kv == self.num_heads:
assert x_kv is None and mixer_subset is None
if cu_adapter_mask is not None:
unique_tasks = torch.unique(cu_adapter_mask).tolist()
qkv_dtype = next(self.Wqkv.parameters()).dtype
qkv = torch.empty(x.shape[0], self.Wqkv.out_features,
dtype=qkv_dtype, device=x.device)
for task_id in unique_tasks:
task_indices = (cu_adapter_mask == task_id).nonzero(as_tuple=True)[0]
task_tensor = x[task_indices]
if not self.return_residual:
task_qkv = self.Wqkv(task_tensor, task_id=task_id)
else:
task_qkv, _ = self.Wqkv(task_tensor, task_id=task_id, residual=True)
qkv[task_indices] = task_qkv
else:
if not self.return_residual:
qkv = self.Wqkv(x)
else:
qkv, x = self.Wqkv(x)
if self.dwconv:
qkv = rearrange(
self.dwconv_qkv(rearrange(qkv, "b s d -> b d s"))[..., :-2], "b d s -> b s d"
).contiguous()
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
if (
inference_params is None
or inference_params.seqlen_offset == 0
or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0)
or not self.use_flash_attn
):
if self.rotary_emb_dim > 0:
qkv = self.rotary_emb(
qkv,
seqlen_offset=seqlen_offset,
cu_seqlens=cu_seqlens,
max_seqlen=rotary_max_seqlen,
)
if inference_params is None:
if not self.checkpointing:
context = self.inner_attn(qkv, **kwargs)
else:
context = torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, **kwargs)
else:
context = self._update_kvcache_attention(
qkv[:, :, 0], qkv[:, :, 1:], inference_params
)
else:
context = self._apply_rotary_update_kvcache_attention(
qkv[:, :, 0], qkv[:, :, 1:], inference_params
)
else:
if self.cross_attn:
if not self.return_residual:
q = self.Wq(x if mixer_subset is None else x[:, mixer_subset])
kv = self.Wkv(x_kv if x_kv is not None else x)
else:
if x_kv is not None:
kv, x_kv = self.Wkv(x_kv)
else:
kv, x = self.Wkv(x)
q = self.Wq(x if mixer_subset is None else x[:, mixer_subset])
else:
assert self.num_heads_kv != self.num_heads
if not self.return_residual:
qkv = self.Wqkv(x)
else:
qkv, x = self.Wqkv(x)
q = qkv[..., : self.num_heads * self.head_dim]
kv = qkv[..., self.num_heads * self.head_dim :]
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
if self.dwconv:
q = rearrange(
self.dwconv_q(rearrange(q, "b s d -> b d s"))[..., :-2], "b d s -> b s d"
).contiguous()
kv = rearrange(
self.dwconv_kv(rearrange(kv, "b s d -> b d s"))[..., :-2], "b d s -> b s d"
).contiguous()
if (
inference_params is None
or inference_params.seqlen_offset == 0
or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0)
or not self.use_flash_attn
):
if self.rotary_emb_dim > 0:
q, kv = self.rotary_emb(
q,
kv,
seqlen_offset=seqlen_offset,
cu_seqlens=cu_seqlens,
max_seqlen=rotary_max_seqlen,
)
if inference_params is None:
if not self.checkpointing:
context = self.inner_cross_attn(q, kv, **kwargs)
else:
context = torch.utils.checkpoint.checkpoint(
self.inner_cross_attn, q, kv, **kwargs
)
else:
context = self._update_kvcache_attention(q, kv, inference_params)
else:
context = self._apply_rotary_update_kvcache_attention(q, kv, inference_params)
inp = rearrange(context, "... h d -> ... (h d)")
if cu_adapter_mask is not None:
unique_tasks = torch.unique(cu_adapter_mask).tolist()
out_dtype = next(self.out_proj.parameters()).dtype
out = torch.empty(inp.shape[0], self.out_proj.out_features,
dtype=out_dtype, device=inp.device)
for task_id in unique_tasks:
task_indices = (cu_adapter_mask == task_id).nonzero(as_tuple=True)[0]
task_tensor = inp[task_indices]
task_out = self.out_proj(task_tensor, task_id=task_id)
out[task_indices] = task_out
else:
out = self.out_proj(inp)
return out if not self.return_residual else (out, x)