feat: configurable use_reentrant

#37
by gmastrapas - opened
configuration_xlm_roberta.py CHANGED
@@ -5,6 +5,9 @@ from transformers import PretrainedConfig
5
 
6
 
7
  class XLMRobertaFlashConfig(PretrainedConfig):
 
 
 
8
  def __init__(
9
  self,
10
  vocab_size: int = 250002,
@@ -25,6 +28,7 @@ class XLMRobertaFlashConfig(PretrainedConfig):
25
  position_embedding_type: str = "rotary",
26
  rotary_emb_base: float = 10000.0,
27
  use_cache: bool = True,
 
28
  classifier_dropout: Optional[float] = None,
29
  lora_adaptations: Optional[List[str]] = None,
30
  lora_prompts: Optional[Dict[str, str]] = None,
@@ -62,6 +66,7 @@ class XLMRobertaFlashConfig(PretrainedConfig):
62
  position_embedding_type (str): Type of position embeddings. Options are 'absolute', 'alibi', or 'rotary'.
63
  rotary_emb_base (float): Base for rotary embeddings.
64
  use_cache (bool): Whether or not the model should return the last key/values attentions (not used by all models).
 
65
  classifier_dropout (Optional[float]): The dropout ratio for the classification head.
66
  lora_adaptations (Optional[List[str]]): LoRA adaptations configuration.
67
  lora_prompts (Optional[Dict[str, str]]): LoRA prompts configuration.
@@ -100,6 +105,7 @@ class XLMRobertaFlashConfig(PretrainedConfig):
100
  self.position_embedding_type = position_embedding_type
101
  self.rotary_emb_base = rotary_emb_base
102
  self.use_cache = use_cache
 
103
  self.classifier_dropout = classifier_dropout
104
  self.load_trained_adapters = load_trained_adapters
105
  self.lora_adaptations = lora_adaptations
 
5
 
6
 
7
  class XLMRobertaFlashConfig(PretrainedConfig):
8
+
9
+ model_type = "xlm-roberta"
10
+
11
  def __init__(
12
  self,
13
  vocab_size: int = 250002,
 
28
  position_embedding_type: str = "rotary",
29
  rotary_emb_base: float = 10000.0,
30
  use_cache: bool = True,
31
+ use_reentrant: bool = False,
32
  classifier_dropout: Optional[float] = None,
33
  lora_adaptations: Optional[List[str]] = None,
34
  lora_prompts: Optional[Dict[str, str]] = None,
 
66
  position_embedding_type (str): Type of position embeddings. Options are 'absolute', 'alibi', or 'rotary'.
67
  rotary_emb_base (float): Base for rotary embeddings.
68
  use_cache (bool): Whether or not the model should return the last key/values attentions (not used by all models).
69
+ use_reentrant (bool): Whether or not the model should enable the 'use_reentrant' flag in gradient checkpointing.
70
  classifier_dropout (Optional[float]): The dropout ratio for the classification head.
71
  lora_adaptations (Optional[List[str]]): LoRA adaptations configuration.
72
  lora_prompts (Optional[Dict[str, str]]): LoRA prompts configuration.
 
105
  self.position_embedding_type = position_embedding_type
106
  self.rotary_emb_base = rotary_emb_base
107
  self.use_cache = use_cache
108
+ self.use_reentrant = use_reentrant
109
  self.classifier_dropout = classifier_dropout
110
  self.load_trained_adapters = load_trained_adapters
111
  self.lora_adaptations = lora_adaptations
modeling_xlm_roberta.py CHANGED
@@ -181,6 +181,7 @@ class XLMRobertaEncoder(nn.Module):
181
  def __init__(self, config: XLMRobertaFlashConfig):
182
  super().__init__()
183
  self.use_flash_attn = get_use_flash_attn(config)
 
184
  self.layers = nn.ModuleList(
185
  [create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)]
186
  )
@@ -210,7 +211,7 @@ class XLMRobertaEncoder(nn.Module):
210
  hidden_states = torch.utils.checkpoint.checkpoint(
211
  layer,
212
  hidden_states,
213
- use_reentrant=False,
214
  mixer_kwargs=mixer_kwargs,
215
  )
216
  else:
@@ -234,7 +235,7 @@ class XLMRobertaEncoder(nn.Module):
234
  hidden_states = torch.utils.checkpoint.checkpoint(
235
  layer,
236
  hidden_states,
237
- use_reentrant=False,
238
  mixer_kwargs=mixer_kwargs,
239
  )
240
  else:
@@ -246,7 +247,7 @@ class XLMRobertaEncoder(nn.Module):
246
  hidden_states = torch.utils.checkpoint.checkpoint(
247
  layer,
248
  hidden_states,
249
- use_reentrant=False,
250
  mixer_kwargs=mixer_kwargs,
251
  )
252
  else:
@@ -284,7 +285,7 @@ class XLMRobertaEncoder(nn.Module):
284
  torch.utils.checkpoint.checkpoint(
285
  self.layers[-1],
286
  hidden_states_subset,
287
- use_reentrant=False,
288
  mixer_kwargs=mixer_kwargs,
289
  )
290
  else:
 
181
  def __init__(self, config: XLMRobertaFlashConfig):
182
  super().__init__()
183
  self.use_flash_attn = get_use_flash_attn(config)
184
+ self.use_reentrant = config.use_reentrant
185
  self.layers = nn.ModuleList(
186
  [create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)]
187
  )
 
211
  hidden_states = torch.utils.checkpoint.checkpoint(
212
  layer,
213
  hidden_states,
214
+ use_reentrant=self.use_reentrant,
215
  mixer_kwargs=mixer_kwargs,
216
  )
217
  else:
 
235
  hidden_states = torch.utils.checkpoint.checkpoint(
236
  layer,
237
  hidden_states,
238
+ use_reentrant=self.use_reentrant,
239
  mixer_kwargs=mixer_kwargs,
240
  )
241
  else:
 
247
  hidden_states = torch.utils.checkpoint.checkpoint(
248
  layer,
249
  hidden_states,
250
+ use_reentrant=self.use_reentrant,
251
  mixer_kwargs=mixer_kwargs,
252
  )
253
  else:
 
285
  torch.utils.checkpoint.checkpoint(
286
  self.layers[-1],
287
  hidden_states_subset,
288
+ use_reentrant=self.use_reentrant,
289
  mixer_kwargs=mixer_kwargs,
290
  )
291
  else: