jinhybr's picture
End of training
2f2477a
|
raw
history blame
7.49 kB
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - wild_receipt
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: OCR-LayoutLMv3-Invoice
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: wild_receipt
          type: wild_receipt
          config: WildReceipt
          split: train
          args: WildReceipt
        metrics:
          - name: Precision
            type: precision
            value: 0.8765398302764851
          - name: Recall
            type: recall
            value: 0.8812439796339617
          - name: F1
            type: f1
            value: 0.8788856103753516
          - name: Accuracy
            type: accuracy
            value: 0.92678512668641

OCR-LayoutLMv3-Invoice

This model is a fine-tuned version of microsoft/layoutlmv3-base on the wild_receipt dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3159
  • Precision: 0.8765
  • Recall: 0.8812
  • F1: 0.8789
  • Accuracy: 0.9268

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 6000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.16 100 1.5032 0.4934 0.1444 0.2234 0.6064
No log 0.32 200 1.0282 0.5884 0.4420 0.5048 0.7385
No log 0.47 300 0.7856 0.7448 0.6205 0.6770 0.8133
No log 0.63 400 0.6464 0.7736 0.6689 0.7174 0.8399
1.1733 0.79 500 0.5672 0.7609 0.7303 0.7453 0.8557
1.1733 0.95 600 0.5055 0.7658 0.7652 0.7655 0.8677
1.1733 1.1 700 0.4735 0.7946 0.7848 0.7897 0.8784
1.1733 1.26 800 0.4414 0.7962 0.7946 0.7954 0.8818
1.1733 1.42 900 0.4094 0.8176 0.8064 0.8120 0.8894
0.5047 1.58 1000 0.3971 0.8219 0.8248 0.8234 0.8961
0.5047 1.74 1100 0.4082 0.7993 0.8362 0.8174 0.8927
0.5047 1.89 1200 0.3797 0.8240 0.8317 0.8278 0.8962
0.5047 2.05 1300 0.3597 0.8326 0.8331 0.8329 0.9020
0.5047 2.21 1400 0.3544 0.8462 0.8283 0.8371 0.9020
0.368 2.37 1500 0.3374 0.8428 0.8435 0.8432 0.9056
0.368 2.52 1600 0.3364 0.8406 0.8522 0.8464 0.9089
0.368 2.68 1700 0.3404 0.8467 0.8536 0.8501 0.9107
0.368 2.84 1800 0.3319 0.8405 0.8501 0.8453 0.9090
0.368 3.0 1900 0.3324 0.8584 0.8492 0.8538 0.9117
0.2949 3.15 2000 0.3204 0.8691 0.8404 0.8545 0.9119
0.2949 3.31 2100 0.3107 0.8599 0.8547 0.8573 0.9162
0.2949 3.47 2200 0.3169 0.8680 0.8489 0.8584 0.9146
0.2949 3.63 2300 0.3190 0.8683 0.8519 0.8600 0.9152
0.2949 3.79 2400 0.2975 0.8631 0.8617 0.8624 0.9182
0.2438 3.94 2500 0.3040 0.8566 0.8640 0.8603 0.9171
0.2438 4.1 2600 0.3045 0.8585 0.8642 0.8613 0.9181
0.2438 4.26 2700 0.3139 0.8498 0.8748 0.8621 0.9160
0.2438 4.42 2800 0.2985 0.8642 0.8672 0.8657 0.9214
0.2438 4.57 2900 0.3047 0.8688 0.8694 0.8691 0.9214
0.2028 4.73 3000 0.2986 0.8686 0.8695 0.8691 0.9207
0.2028 4.89 3100 0.3135 0.8628 0.8755 0.8691 0.9197
0.2028 5.05 3200 0.2927 0.8656 0.8755 0.8705 0.9217
0.2028 5.21 3300 0.2992 0.8724 0.8697 0.8711 0.9228
0.2028 5.36 3400 0.2975 0.8831 0.8639 0.8734 0.9244
0.1814 5.52 3500 0.2897 0.8736 0.8788 0.8762 0.9250
0.1814 5.68 3600 0.3118 0.8674 0.8751 0.8712 0.9216
0.1814 5.84 3700 0.2974 0.8735 0.8779 0.8757 0.9237
0.1814 5.99 3800 0.2957 0.8696 0.8815 0.8755 0.9240
0.1814 6.15 3900 0.3120 0.8698 0.8817 0.8757 0.9250
0.1602 6.31 4000 0.3080 0.8715 0.8800 0.8757 0.9238
0.1602 6.47 4100 0.3031 0.8767 0.8788 0.8777 0.9261
0.1602 6.62 4200 0.3146 0.8699 0.8784 0.8741 0.9227
0.1602 6.78 4300 0.3085 0.8717 0.8788 0.8752 0.9248
0.1602 6.94 4400 0.3023 0.8749 0.8756 0.8752 0.9250
0.1383 7.1 4500 0.3025 0.8860 0.8735 0.8797 0.9252
0.1383 7.26 4600 0.3026 0.8775 0.8810 0.8792 0.9272
0.1383 7.41 4700 0.3146 0.8715 0.8832 0.8773 0.9251
0.1383 7.57 4800 0.3113 0.8769 0.8803 0.8786 0.9275
0.1383 7.73 4900 0.3073 0.8797 0.8786 0.8792 0.9261
0.1306 7.89 5000 0.3163 0.8714 0.8828 0.8770 0.9248
0.1306 8.04 5100 0.3163 0.8753 0.8810 0.8781 0.9250
0.1306 8.2 5200 0.3132 0.8743 0.8804 0.8773 0.9257
0.1306 8.36 5300 0.3119 0.8735 0.8837 0.8786 0.9264
0.1306 8.52 5400 0.3145 0.8826 0.8779 0.8802 0.9272
0.1174 8.68 5500 0.3166 0.8776 0.8811 0.8794 0.9261
0.1174 8.83 5600 0.3146 0.8776 0.8814 0.8795 0.9260
0.1174 8.99 5700 0.3135 0.8763 0.8826 0.8795 0.9271
0.1174 9.15 5800 0.3154 0.8794 0.8818 0.8806 0.9275
0.1174 9.31 5900 0.3152 0.8788 0.8817 0.8802 0.9274
0.11 9.46 6000 0.3159 0.8765 0.8812 0.8789 0.9268

Framework versions

  • Transformers 4.25.0.dev0
  • Pytorch 1.12.1
  • Datasets 2.6.1
  • Tokenizers 0.13.1