jjglilleberg/bert-finetuned-ner-nbci-disease
This model is a fine-tuned version of bert-base-cased on the NCBI Disease Dataset. It achieves the following results on the evaluation set:
- Precision: 0.759090909090909,
- Recall: 0.8487928843710292,
- F1: 0.8014397120575885,
- Number: 787,
- Overall_precision: 0.759090909090909,
- Overall_recall: 0.8487928843710292,
- Overall_f1: 0.8014397120575885,
- Overall_accuracy: 0.9824785260799204
Model description
More information needed
Intended uses & limitations
The intended use of this model is for Disease Name Recognition and Concept Normalization.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer:
- 'name': 'AdamWeightDecay',
- 'learning_rate':
- 'class_name': 'PolynomialDecay',
- 'config':
- 'initial_learning_rate': 2e-05,
- 'decay_steps': 1020,
- 'end_learning_rate': 0.0,
- 'power': 1.0,
- 'cycle': False,
- 'name': None
- 'decay': 0.0,
- 'beta_1': 0.9,
- 'beta_2': 0.999,
- 'epsilon': 1e-08,
- 'amsgrad': False,
- 'weight_decay_rate': 0.01
- training_precision: mixed_float16
Training results
Train Loss | Validation Loss | Epoch |
---|---|---|
0.1281 | 0.0561 | 0 |
0.0372 | 0.0596 | 1 |
0.0211 | 0.0645 | 2 |
Framework versions
- Transformers 4.28.0
- TensorFlow 2.12.0
- Datasets 2.11.0
- Tokenizers 0.13.3
- Downloads last month
- 3
Inference API (serverless) does not yet support keras models for this pipeline type.