joelniklaus's picture
update model card README.md
d28cc2a
|
raw
history blame
2.4 kB
---
tags:
- generated_from_trainer
model-index:
- name: legal-xlm-roberta-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# legal-xlm-roberta-base
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5484
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: tpu
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 1000000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-------:|:---------------:|
| 1.2285 | 0.05 | 50000 | 0.9298 |
| 1.0417 | 0.1 | 100000 | 0.7723 |
| 0.9525 | 0.15 | 150000 | 0.7258 |
| 0.9668 | 0.2 | 200000 | 0.6884 |
| 0.8949 | 0.25 | 250000 | 0.6714 |
| 0.921 | 0.3 | 300000 | 0.6617 |
| 0.8324 | 0.35 | 350000 | 0.6423 |
| 0.8406 | 0.4 | 400000 | 0.6259 |
| 0.8136 | 0.45 | 450000 | 0.6147 |
| 0.8247 | 0.5 | 500000 | 0.6095 |
| 0.8649 | 0.55 | 550000 | 0.5985 |
| 0.8119 | 0.6 | 600000 | 0.5973 |
| 0.8422 | 0.65 | 650000 | 0.5813 |
| 0.8006 | 0.7 | 700000 | 0.5701 |
| 0.8072 | 0.75 | 750000 | 0.5662 |
| 0.8154 | 0.8 | 800000 | 0.5514 |
| 0.7794 | 0.85 | 850000 | 0.5562 |
| 0.7924 | 0.9 | 900000 | 0.5558 |
| 0.8207 | 0.95 | 950000 | 0.5587 |
| 0.8279 | 1.0 | 1000000 | 0.5484 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu102
- Datasets 2.8.0
- Tokenizers 0.12.0