ppo-LunarLander-v2 / config.json
johnnyluhk's picture
Upload PPO LunarLander-v2 trained agent
d7534dd verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fda61eada20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fda61eadab0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fda61eadb40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fda61eadbd0>", "_build": "<function ActorCriticPolicy._build at 0x7fda61eadc60>", "forward": "<function ActorCriticPolicy.forward at 0x7fda61eadcf0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fda61eadd80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fda61eade10>", "_predict": "<function ActorCriticPolicy._predict at 0x7fda61eadea0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fda61eadf30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fda61eadfc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fda61eae050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fda61eb8a00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709257256109635960, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEB/k71GO6s/XcmYvrV1qb6MgT+8/ikcvgAAAAAAAAAAWsdIvrd4Kz+jNn++Vl9AvyiX1b1Agmm+AAAAAAAAAABa79C+9BolP5sSX7+FeD6/T6TUPRtfUr4AAAAAAAAAAKC6HT7Sqpk/trhVPvl8K7/pnDM+5iVxPgAAAAAAAAAAzXhrPC+ejj+bC2U9shZGv7N9A756trS9AAAAAAAAAAC6zn0+tjopP1SXET80m2y/oF6uvlI0Mb4AAAAAAAAAAFqvsz09rLQ/Tva8PhsiYb6Kjim9TlNCPQAAAAAAAAAAM16wvaQqsj9OSQq/VJgkvtM+FT2p86m9AAAAAAAAAAAg0YO+IU84P/jzIr9JzVe/O7HavT0Ba74AAAAAAAAAAGbWUDx6ebY/yTu8PYyEEb41ohC+8GVjvgAAAAAAAAAAykjePkpKij6KwC8/x3Wpv9Mm/7xsiK8+AAAAAAAAAAD4UP6++7FuP8vGhb6Jk4O/KHknv1tFsL0AAAAAAAAAAMq/rL4HN7I+0FEavpRJe790FKW+j9MNvgAAAAAAAAAA2nidvie+Gz6CqIk7wjuMv2yMcb4ZCCO9AAAAAAAAAADNjJm9VpO3P1YhN76nA4G+ntXWPGBc470AAAAAAAAAAOaGrz1QvIg/Yo7LPjddWb+HlCS9pvGJvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFWpy9VWCEqMAWyUS1aMAXSUR0BHNOuA7PpqdX2UKGgGR8BFP6hYeT3ZaAdLQ2gIR0BHNtmlImPYdX2UKGgGR8BVrHg9/z8QaAdLYGgIR0BHOPpQk5ZKdX2UKGgGR0AOBhKDkELZaAdLSmgIR0BHO0EPlMh6dX2UKGgGR8BVxWEkB0ZFaAdLh2gIR0BHO6Jhvze5dX2UKGgGR8BYDdOZb6gvaAdLjWgIR0BHPIrOJLuhdX2UKGgGR8BUGjZ13dKvaAdLYmgIR0BHPWYv38GcdX2UKGgGR8BJQhkRSP2gaAdLjWgIR0BHQXsw+MZQdX2UKGgGR8BNGrCemNzbaAdLR2gIR0BHRJI+W4VidX2UKGgGR8BY7pKODJ2daAdLUWgIR0BHR6vicXnAdX2UKGgGR8BHHtdJJ5E/aAdLfmgIR0BHR+JP69CedX2UKGgGR8BUaWseXAuaaAdLXWgIR0BHSM7U5MlDdX2UKGgGR8BGLUJ4SpR5aAdLTGgIR0BHSbp3X7LudX2UKGgGR8BfULMs6JZXaAdLWGgIR0BHSmGmDUVjdX2UKGgGR8BX1zR2KVIJaAdLdWgIR0BHStuUD+zddX2UKGgGR8BSeNKdxyXEaAdLQ2gIR0BHTXiJfpljdX2UKGgGR8BQ2Isqaw2VaAdLRmgIR0BHUFqzqrzYdX2UKGgGR8BYb7qlgtvoaAdLemgIR0BHUe717IDHdX2UKGgGR8BaZq/20zCUaAdLiWgIR0BHU3SBshxHdX2UKGgGR8BLbZ5qubI+aAdLVWgIR0BHU6guh9LIdX2UKGgGR8BcZd9tuUD/aAdLaWgIR0BHVZvtMPBjdX2UKGgGR8BZIHg5zYEoaAdLdWgIR0BHVrfDUExJdX2UKGgGR8BUXBPCVKPGaAdLQmgIR0BHWZPl+3H8dX2UKGgGR8BHXbE5yU9qaAdLcGgIR0BHWeKsMiKSdX2UKGgGR8BSuWdiDujRaAdLdWgIR0BHYUgKWszVdX2UKGgGR8BWytkSVW0aaAdLYmgIR0BHZFBQemvXdX2UKGgGR8BQ2/mDDjzaaAdLR2gIR0BHZVSGahHtdX2UKGgGR8BQ2cIu5BkaaAdLZGgIR0BHZaJIlMRIdX2UKGgGR8BBZ71Iy0rtaAdLaGgIR0BHZz/6wdKedX2UKGgGR8Bi0WuieumraAdLc2gIR0BHaFxXGOuJdX2UKGgGR8BG+N0NjLB9aAdLXGgIR0BHabr9l2/0dX2UKGgGR8BfcH1J17pnaAdLi2gIR0BHavVNHpbEdX2UKGgGR8BczegUUO/daAdLeGgIR0BHbpAlfJFLdX2UKGgGR8BTZVSS/0ulaAdLWGgIR0BHbzQmeDnOdX2UKGgGR8BNTLk8zQ/paAdLUmgIR0BHcJTl1bJPdX2UKGgGR8BluT7TDwYtaAdLlWgIR0BHcQOe8PFvdX2UKGgGR8BPTWl2vB8AaAdLdWgIR0BHc+FtbcGkdX2UKGgGR8BTErVawD/3aAdLTmgIR0BHdzqB3A2ydX2UKGgGR8Biu6j8DSw4aAdLg2gIR0BHd5lWfbsXdX2UKGgGR8BSlZWvKU3XaAdLamgIR0BHd3aBZpztdX2UKGgGR8BTw+ejEehgaAdLfmgIR0BHeHIQvpQldX2UKGgGR8BQIG9pRGc4aAdLS2gIR0BHfjCP6sQvdX2UKGgGR8BGAY7Rv3rVaAdLRmgIR0BHfgY51eSkdX2UKGgGR8BYyNMbm2b5aAdLWGgIR0BHf2jXWe6JdX2UKGgGR8BQTOHSF49paAdLS2gIR0BHgvXTVlPKdX2UKGgGR8BKBaxHG0eEaAdLTWgIR0BHhCQ1aW5ZdX2UKGgGR8BUQnAIppevaAdLc2gIR0BHhCj1wo9cdX2UKGgGR8BUiQqVhTfjaAdLTWgIR0BHhfM4cWCVdX2UKGgGR8BShCpvP1L8aAdLdWgIR0BHheZG8VYZdX2UKGgGR8BQt7MxGlQ/aAdLbWgIR0BHhll9Sde6dX2UKGgGR8BSr5m29crzaAdLQ2gIR0BHiUj1PFefdX2UKGgGR8BQ/f8hs67vaAdLR2gIR0BHi4Y77sOYdX2UKGgGR8BnJAcWCVbBaAdLkWgIR0BHjQeNkvsadX2UKGgGR8BIfV0DEFW5aAdLYGgIR0BHjeY+jdpJdX2UKGgGR8BJEcJ+lTFVaAdLXGgIR0BHkD9n9NvgdX2UKGgGR8Ba5neBQN1AaAdLgmgIR0BHk7G3nZCfdX2UKGgGR8BIsD/VAiV0aAdLO2gIR0BHk/WlMyrQdX2UKGgGR8A9bJkoWpIdaAdLUmgIR0BHlZggHNX6dX2UKGgGR8BfKkzKs+3ZaAdLdWgIR0BHlyro4dZJdX2UKGgGR8BRJkjC53C9aAdLT2gIR0BHmwsoUi6hdX2UKGgGR8AqHoIOYplSaAdLVmgIR0BHnR+SbH6udX2UKGgGR8BRwp6Y3Ns4aAdLdmgIR0BHnhX0XgtOdX2UKGgGR8BgztMsYl6aaAdLZmgIR0BHnrBsQ/X5dX2UKGgGR8Bf1R6OYIBzaAdLemgIR0BHn3AmAskIdX2UKGgGR8BF+ZElVtGeaAdLdWgIR0BHo94u9OARdX2UKGgGR8BgH9KRMewLaAdLe2gIR0BHp71yvLX+dX2UKGgGR8BCWI9TxXnyaAdLSmgIR0BHqG7SRbKSdX2UKGgGR8BYte7YkE9uaAdLc2gIR0BHqOIyj59FdX2UKGgGR8BSROlO45LiaAdLW2gIR0BHqV/DtPYWdX2UKGgGR8BRpGVVxS5zaAdLd2gIR0BHrcnE2pAEdX2UKGgGR8BXOdPpIMBqaAdLemgIR0BHr4pUgjhUdX2UKGgGR8BdMiiItUXIaAdLgmgIR0BHr2ll9SdfdX2UKGgGR8BRPD9sJpnIaAdLbmgIR0BHtBBiTdLydX2UKGgGR8A2OR3NcGC7aAdLW2gIR0BHtHhsImgKdX2UKGgGR8BXI8vIwM6SaAdLeGgIR0BHtQLE1l5GdX2UKGgGR8BQwxQFcIJJaAdLXGgIR0BHuClzltCRdX2UKGgGR8BIiBcAzYVZaAdLZmgIR0BHuXp4bCJodX2UKGgGR8BIOzJyQxN7aAdLfmgIR0BHuhfBvaUSdX2UKGgGR8BQtg9ic5KfaAdLaWgIR0BHvHiWE9McdX2UKGgGR8BHuIsZpBX0aAdLT2gIR0BHvZ0r9VFQdX2UKGgGR8Bd6PczqKP5aAdLd2gIR0BHvvH1e0HAdX2UKGgGR8BPO2iL2pQ2aAdLWmgIR0BHwXfhuO0cdX2UKGgGR8BJHOnMt9QXaAdLRmgIR0BHwmlZX+2mdX2UKGgGR8BUu2gSOBDpaAdLcWgIR0BHwwiiZfD2dX2UKGgGR8BB5mJFb3XaaAdLYWgIR0BHww0O3DvWdX2UKGgGR8BY525MDfWMaAdLdGgIR0BHyLh73PAwdX2UKGgGR8BdtheC04R3aAdLZ2gIR0BHyZc1O0swdX2UKGgGR8BZpe1v2oNvaAdLQ2gIR0BHyhHskY4ydX2UKGgGR8BZvVWXC0ngaAdLSGgIR0BHz5kCmuTzdX2UKGgGR8BWZeD3/PxAaAdLbGgIR0BH0Rl6JIlMdX2UKGgGR8BE+UCq6vq1aAdLS2gIR0BH0avRqoIfdX2UKGgGR8BdrmwJPZZkaAdLbWgIR0BH0dNN8E3bdX2UKGgGR8BpcsWAPNFCaAdLlGgIR0BH17D/EOy3dX2UKGgGR8BUxEkOZssQaAdLXGgIR0BH1+MqBmPHdX2UKGgGR8A6tYxcmjTKaAdLfmgIR0BH29bgTAWSdX2UKGgGR0AMAkqtozvaaAdLkWgIR0BH3JazNUwSdX2UKGgGR8BKbQSamXPaaAdLfmgIR0BH3InBtUGWdX2UKGgGR8BKvOogmqo7aAdLXmgIR0BH3FEqlP8AdX2UKGgGR8BPgaO5rgwXaAdLR2gIR0BH3YD9wWFfdX2UKGgGR8BBBSiM5wOwaAdLamgIR0BH3pVCHARDdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVzAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWy9ob21lL2NoaW4vYW5hY29uZGEzL2VudnMvUkwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFsvaG9tZS9jaGluL2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVzAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWy9ob21lL2NoaW4vYW5hY29uZGEzL2VudnMvUkwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFsvaG9tZS9jaGluL2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.5.0-21-generic-x86_64-with-glibc2.35 # 21~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 9 13:32:52 UTC 2", "Python": "3.10.13", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}