|
--- |
|
license: cc-by-nc-4.0 |
|
base_model: PhigRange-2.7B-slerp |
|
tags: |
|
- generated_from_trainer |
|
- DPO |
|
- instruct |
|
- finetune |
|
- chatml |
|
- gpt4 |
|
- synthetic data |
|
- distillation |
|
model-index: |
|
- name: PhigRange-DPO |
|
results: [] |
|
datasets: |
|
- mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
--- |
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# PhigRange-DPO |
|
 |
|
PhigRange-DPO is a DPO fine-tuned of [johnsnowlabs/PhigRange-2.7B-Slerp](https://huggingface.co/mlabonne/NeuralMonarch-7B/) using the [mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha](https://huggingface.co/datasets/mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha) preference dataset. The model has been trained for for 1080 steps. |
|
|
|
|
|
## π Evaluation results |
|
|
|
### Coming Soon |
|
|
|
## π» Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "johnsnowlabs/PhigRange-DPO" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |
|
|
|
|
|
|
|
## Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-04 |
|
- train_batch_size: 1 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 8 |
|
- optimizer: AdamOptimizer32bit |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 100 |
|
- training_steps: 1080 |
|
|
|
|
|
## Framework versions |
|
|
|
- Transformers 4.38.0.dev0 |
|
- Pytorch 2.1.2+cu118 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.15.0 |