File size: 11,781 Bytes
b19206a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
372d33f
b19206a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
372d33f
b19206a
372d33f
b19206a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
621af32
b19206a
372d33f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b19206a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
---
language:
- ace
- acm
- acq
- aeb
- af
- ajp
- ak
- als
- am
- apc
- ar
- ars
- ary
- arz
- as
- ast
- awa
- ayr
- azb
- azj
- ba
- bm
- ban
- be
- bem
- bn
- bho
- bjn
- bo
- bs
- bug
- bg
- ca
- ceb
- cs
- cjk
- ckb
- crh
- cy
- da
- de
- dik
- dyu
- dz
- el
- en
- eo
- et
- eu
- ee
- fo
- fj
- fi
- fon
- fr
- fur
- fuv
- gaz
- gd
- ga
- gl
- gn
- gu
- ht
- ha
- he
- hi
- hne
- hr
- hu
- hy
- ig
- ilo
- id
- is
- it
- jv
- ja
- kab
- kac
- kam
- kn
- ks
- ka
- kk
- kbp
- kea
- khk
- km
- ki
- rw
- ky
- kmb
- kmr
- knc
- kg
- ko
- lo
- lij
- li
- ln
- lt
- lmo
- ltg
- lb
- lua
- lg
- luo
- lus
- lvs
- mag
- mai
- ml
- mar
- min
- mk
- mt
- mni
- mos
- mi
- my
- nl
- nn
- nb
- npi
- nso
- nus
- ny
- oc
- ory
- pag
- pa
- pap
- pbt
- pes
- plt
- pl
- pt
- prs
- quy
- ro
- rn
- ru
- sg
- sa
- sat
- scn
- shn
- si
- sk
- sl
- sm
- sn
- sd
- so
- st
- es
- sc
- sr
- ss
- su
- sv
- swh
- szl
- ta
- taq
- tt
- te
- tg
- tl
- th
- ti
- tpi
- tn
- ts
- tk
- tum
- tr
- tw
- tzm
- ug
- uk
- umb
- ur
- uzn
- vec
- vi
- war
- wo
- xh
- ydd
- yo
- yue
- zh
- zsm
- zu
language_details: >-
  ace_Arab, ace_Latn, acm_Arab, acq_Arab, aeb_Arab, afr_Latn, ajp_Arab,
  aka_Latn, amh_Ethi, apc_Arab, arb_Arab, ars_Arab, ary_Arab, arz_Arab,
  asm_Beng, ast_Latn, awa_Deva, ayr_Latn, azb_Arab, azj_Latn, bak_Cyrl,
  bam_Latn, ban_Latn,bel_Cyrl, bem_Latn, ben_Beng, bho_Deva, bjn_Arab, bjn_Latn,
  bod_Tibt, bos_Latn, bug_Latn, bul_Cyrl, cat_Latn, ceb_Latn, ces_Latn,
  cjk_Latn, ckb_Arab, crh_Latn, cym_Latn, dan_Latn, deu_Latn, dik_Latn,
  dyu_Latn, dzo_Tibt, ell_Grek, eng_Latn, epo_Latn, est_Latn, eus_Latn,
  ewe_Latn, fao_Latn, pes_Arab, fij_Latn, fin_Latn, fon_Latn, fra_Latn,
  fur_Latn, fuv_Latn, gla_Latn, gle_Latn, glg_Latn, grn_Latn, guj_Gujr,
  hat_Latn, hau_Latn, heb_Hebr, hin_Deva, hne_Deva, hrv_Latn, hun_Latn,
  hye_Armn, ibo_Latn, ilo_Latn, ind_Latn, isl_Latn, ita_Latn, jav_Latn,
  jpn_Jpan, kab_Latn, kac_Latn, kam_Latn, kan_Knda, kas_Arab, kas_Deva,
  kat_Geor, knc_Arab, knc_Latn, kaz_Cyrl, kbp_Latn, kea_Latn, khm_Khmr,
  kik_Latn, kin_Latn, kir_Cyrl, kmb_Latn, kon_Latn, kor_Hang, kmr_Latn,
  lao_Laoo, lvs_Latn, lij_Latn, lim_Latn, lin_Latn, lit_Latn, lmo_Latn,
  ltg_Latn, ltz_Latn, lua_Latn, lug_Latn, luo_Latn, lus_Latn, mag_Deva,
  mai_Deva, mal_Mlym, mar_Deva, min_Latn, mkd_Cyrl, plt_Latn, mlt_Latn,
  mni_Beng, khk_Cyrl, mos_Latn, mri_Latn, zsm_Latn, mya_Mymr, nld_Latn,
  nno_Latn, nob_Latn, npi_Deva, nso_Latn, nus_Latn, nya_Latn, oci_Latn,
  gaz_Latn, ory_Orya, pag_Latn, pan_Guru, pap_Latn, pol_Latn, por_Latn,
  prs_Arab, pbt_Arab, quy_Latn, ron_Latn, run_Latn, rus_Cyrl, sag_Latn,
  san_Deva, sat_Beng, scn_Latn, shn_Mymr, sin_Sinh, slk_Latn, slv_Latn,
  smo_Latn, sna_Latn, snd_Arab, som_Latn, sot_Latn, spa_Latn, als_Latn,
  srd_Latn, srp_Cyrl, ssw_Latn, sun_Latn, swe_Latn, swh_Latn, szl_Latn,
  tam_Taml, tat_Cyrl, tel_Telu, tgk_Cyrl, tgl_Latn, tha_Thai, tir_Ethi,
  taq_Latn, taq_Tfng, tpi_Latn, tsn_Latn, tso_Latn, tuk_Latn, tum_Latn,
  tur_Latn, twi_Latn, tzm_Tfng, uig_Arab, ukr_Cyrl, umb_Latn, urd_Arab,
  uzn_Latn, vec_Latn, vie_Latn, war_Latn, wol_Latn, xho_Latn, ydd_Hebr,
  yor_Latn, yue_Hant, zho_Hans, zho_Hant, zul_Latn
license: mit
metrics:
- bleu
pipeline_tag: automatic-speech-recognition
tags:
- zeroswot
- speech translation
- zero-shot
- end-to-end
- nllb
- wav2vec2
---

# ZeroSwot ✨🤖✨

<!-- <div style='display:flex; gap: 0.25rem; '>
<a href='https://arxiv.org/abs/2402.10422'><img src='https://img.shields.io/badge/paper-PDF-green'></a>
<a href='https://github.com/mt-upc/ZeroSwot/blob/main/LICENSE'><img src='https://img.shields.io/badge/License-MIT-blue.svg'></a>
<a href='https://github.com/mt-upc/ZeroSwot'><img src='https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white'></a>
</div> -->

ZeroSwot is a state-of-the-art zero-shot end-to-end Speech Translation system.

<div align=center><img src="resources/intro.png" height="65%" width="65%"/></div>

The model is created by adapting a wav2vec2.0-based encoder to the embedding space of NLLB, using a novel subword compression module and Optimal Transport, while only utilizing ASR data. It thus enables **Zero-shot E2E Speech Translation to all the 200 languages supported by NLLB**.

For more details please refer to our [paper](https://arxiv.org/abs/2402.10422) and the [original repo](https://github.com/mt-upc/ZeroSwot) build on fairseq.

## Architecture

The compression module is a light-weight transformer that takes as input the hidden state of wav2vec2.0 and the corresponding CTC predictions, and compresses them to subword-like embeddings similar to those expected from NLLB and aligns them using Optimal Transport. For inference we simply pass the output of the speech encoder to NLLB encoder.

<div align=center><img src="resources/methodology.png" height="120%" width="120%"/></div>

## Version

This version of ZeroSwot is trained with ASR data from MuST-C v1.0, and adapted [wav2vec2.0-large](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self) to the [nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) model.

We have more versions available:

| Models | ASR data | NLLB version |
|:------:|:--------:|:------------:|
| [ZeroSwot-Medium_asr-mustc](https://huggingface.co/johntsi/ZeroSwot-Medium_asr-mustc_en-to-200) | MuST-C v1.0 | [distilled-600M original](https://huggingface.co/facebook/nllb-200-distilled-600M)| 
| [ZeroSwot-Medium_asr-mustc_mt-mustc](https://huggingface.co/johntsi/ZeroSwot-Medium_asr-mustc_mt-mustc_en-to-8)  | MuST-C v1.0 | [distilled-600M finetuned w/ MuST-C](https://huggingface.co/johntsi/nllb-200-distilled-600M_mustc_en-to-8) |
| [ZeroSwot-Large_asr-mustc](https://huggingface.co/johntsi/ZeroSwot-Large_asr-mustc_en-to-200)  | MuST-C v1.0 | [distilled-1.3B original](https://huggingface.co/facebook/nllb-200-distilled-1.3B) | 
| [ZeroSwot-Large_asr-mustc_mt-mustc](https://huggingface.co/johntsi/ZeroSwot-Large_asr-mustc_mt-mustc_en-to-8) | MuST-C v1.0 | [distilled-1.3B finetuned w/ MuST-C](https://huggingface.co/johntsi/nllb-200-distilled-1.3B_mustc_en-to-8) |
| [ZeroSwot-Medium_asr-cv](https://huggingface.co/johntsi/ZeroSwot-Medium_asr-cv_en-to-200) | CommonVoice | [distilled-600M original](https://huggingface.co/facebook/nllb-200-distilled-600M)| 
| [ZeroSwot-Medium_asr-cv_mt-covost2](https://huggingface.co/johntsi/ZeroSwot-Medium_asr-cv_mt-covost2_en-to-15) | CommonVoice  | [distilled-600M finetuned w/ CoVoST2](https://huggingface.co/johntsi/nllb-200-distilled-600M_covost2_en-to-15) |
| [ZeroSwot-Large_asr-cv](https://huggingface.co/johntsi/ZeroSwot-Large_asr-cv_en-to-200) | CommonVoice  | [distilled-1.3B original](https://huggingface.co/facebook/nllb-200-distilled-1.3B) | 
| [ZeroSwot-Large_asr-cv_mt-covost2](https://huggingface.co/johntsi/ZeroSwot-Large_asr-cv_mt-covost2_en-to-15) | CommonVoice  | [distilled-1.3B finetuned w/ CoVoST2](https://huggingface.co/johntsi/nllb-200-distilled-1.3B_covost2_en-to-15) | 

## Usage

The model is tested with python 3.9.16 and Transformer v4.41.2. Install also torchaudio and sentencepiece for processing.

```bash
pip install transformers torchaudio sentencepiece
```


```python
from transformers import Wav2Vec2Processor, NllbTokenizer, AutoModel, AutoModelForSeq2SeqLM
import torchaudio

def load_and_resample_audio(audio_path, target_sr=16000):
    audio, orig_freq = torchaudio.load(audio_path)
    if orig_freq != target_sr:
        audio = torchaudio.functional.resample(audio, orig_freq=orig_freq, new_freq=target_sr)
    audio = audio.squeeze(0).numpy()
    return audio

# Load processors and tokenizers
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")

# Load ZeroSwot Encoder
commit_hash = "30d17145fd8e040430bbfcf74a011070fa83debd"
zeroswot_encoder = AutoModel.from_pretrained(
    "johntsi/ZeroSwot-Medium_asr-mustc_en-to-200", trust_remote_code=True, revision=commit_hash,
)
zeroswot_encoder.eval()
zeroswot_encoder.to("cuda")

# Load NLLB Model
nllb_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
nllb_model.eval()
nllb_model.to("cuda")

# Load audio file
audio = load_and_resample_audio(path_to_audio_file) # you can use "resources/sample.wav" for testing
input_values = processor(audio, sampling_rate=16000, return_tensors="pt").to("cuda")

# translation to German
compressed_embeds, attention_mask = zeroswot_encoder(**input_values)
predicted_ids = nllb_model.generate(
    inputs_embeds=compressed_embeds,
    attention_mask=attention_mask,
    forced_bos_token_id=tokenizer.lang_code_to_id["deu_Latn"],
    num_beams=5,
)
translation = tokenizer.decode(predicted_ids[0], skip_special_tokens=True)
print(translation)
```

## Results

BLEU scores on MuST-C v1.0 tst-COMMON compared to _supervised_ SOTA models from the literature. You can refer to Table 4 of the Results section in the paper for more details.

|          Models         |  ZS  |  Size (B)  |  De  |  Es  |  Fr  |  It  |  Nl  |  Pt  |  Ro  |  Ru  | Average |
|:-----------------------:|:----:|:----------:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:-------:|
| Chimera (Han et al., 2021)           | ✗ | 0.15      | 27.1 | 30.6 | 35.6 | 25.0 | 29.2 | 30.2 | 24.0 | 17.4 | 27.4 |
| STEMM (Fang et al., 2022)            | ✗ | 0.15    | 28.7 | 31.0 | 37.4 | 25.8 | 30.5 | 31.7 | 24.5 | 17.8 | 28.4 |
| SpeechUT (Zhang et al., 2022)        | ✗ | 0.15     | 30.1 | 33.6 | 41.4 | -    | -    | -    | -    | -    | -    |
| Siamese-PT (Le et al., 2023)         | ✗ | 0.25    | 27.9 | 31.8 | 39.2 | 27.7 | 31.7 | 34.2 | 27.0 | 18.5 | 29.8 |
| CRESS (Fang and Feng, 2023)          | ✗ | 0.15    | 29.4 | 33.2 | 40.1 | 27.6 | 32.2 | 33.6 | 26.4 | 19.7 | 30.3 |
| SimRegCR (Gao et al., 2023b)         | ✗ | 0.15    | 29.2 | 33.0 | 40.0 | 28.2 | 32.7 | 34.2 | 26.7 | 20.1 | 30.5 |
| LST (LLaMA2-13B) (Zhang et al., 2023)| ✗ | 13       | 30.4 | 35.3 | **41.6** | -    | -    | -    | -    | -    | -    |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| [ZeroSwot-Medium_asr-cv](https://huggingface.co/johntsi/ZeroSwot-Medium_asr-cv_en-to-200)                            | ✓ | 0.35/0.95 | 24.8 | 30.0 | 32.6 | 24.1 | 28.6 | 28.8 | 22.9 | 16.4 | 26.0 |
| [ZeroSwot-Medium_asr-mustc](https://huggingface.co/johntsi/ZeroSwot-Medium_asr-mustc_en-to-200)                 | ✓ | 0.35/0.95 | 28.5 | 33.1 | 37.5 | 28.2 | 32.3 | 32.9 | 26.0 | 18.7 | 29.6 |
| [ZeroSwot-Medium_asr-mustc_mt-mustc](https://huggingface.co/johntsi/ZeroSwot-Medium_asr-mustc_mt-mustc_en-to-8)    | ✓ | 0.35/0.95†| 30.5 | 34.9 | 39.4 | 30.6 | 35.0 | 37.1 | 27.8 | 20.3 | 31.9 |
| [ZeroSwot-Large_asr-cv](https://huggingface.co/johntsi/ZeroSwot-Large_asr-cv_en-to-200)                                 | ✓ | 0.35/1.65 | 26.5 | 31.1 | 33.5 | 25.4 | 29.9 | 30.6 | 24.3 | 18.0 | 27.4 |
| [ZeroSwot-Large_asr-mustc](https://huggingface.co/johntsi/ZeroSwot-Large_asr-mustc_en-to-200)| ✓ | 0.35/1.65 | 30.1 | 34.8 | 38.9 | 29.8 | 34.4 | 35.3 | 27.6 | 20.4 | 31.4 |
| [ZeroSwot-Large_asr-mustc_mt-mustc](https://huggingface.co/johntsi/ZeroSwot-Large_asr-mustc_mt-mustc_en-to-8)| ✓ | 0.35/1.65†| **31.2** | **35.8** | 40.5 | **31.4** | **36.3** | **38.3** | **28.0** | **21.5** | **32.9** |

## Citation

If you find ZeroSwot useful for your research, please cite our paper :)

```
@misc{tsiamas2024pushing,
      title={{Pushing the Limits of Zero-shot End-to-End Speech Translation}}, 
      author={Ioannis Tsiamas and Gerard I. Gállego and José A. R. Fonollosa and Marta R. Costa-jussà},
      year={2024},
      eprint={2402.10422},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```