File size: 3,550 Bytes
2a95fa7
 
 
 
 
 
7b00150
2a95fa7
 
 
 
7b00150
 
 
2a95fa7
 
7b00150
2a95fa7
7b00150
 
 
 
2a95fa7
7b00150
 
 
2a95fa7
 
 
 
 
 
 
 
7b00150
2a95fa7
 
 
 
7b00150
19cacc0
2a95fa7
 
 
 
 
 
7b00150
2a95fa7
7b00150
 
 
 
 
 
 
 
 
 
 
2a95fa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b00150
2a95fa7
 
 
 
 
 
7b00150
2a95fa7
 
7b00150
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import gc
import os
from typing import TypeAlias

import torch
from PIL.Image import Image
from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderKL, AutoencoderTiny, DiffusionPipeline
from huggingface_hub.constants import HF_HUB_CACHE
from pipelines.models import TextToImageRequest
from torch import Generator
from torchao.quantization import quantize_, int8_weight_only
from transformers import T5EncoderModel, CLIPTextModel, logging 
import torch._dynamo
torch._dynamo.config.suppress_errors = True

Pipeline: TypeAlias = FluxPipeline

torch.backends.cudnn.benchmark = True
torch._inductor.config.conv_1x1_as_mm = True
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.epilogue_fusion = False
torch._inductor.config.coordinate_descent_check_all_directions = True


os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True"
os.environ["TOKENIZERS_PARALLELISM"] = "True"
CHECKPOINT = "jokerbit/flux.1-schnell-Robert-int8wo"
REVISION = "5ef0012f11a863e5111ec56540302a023bc8587b"

TinyVAE = "madebyollin/taef1"
TinyVAE_REV = "2d552378e58c9c94201075708d7de4e1163b2689"


def load_pipeline() -> Pipeline:
    path = os.path.join(HF_HUB_CACHE, "models--jokerbit--flux.1-schnell-Robert-int8wo/snapshots/5ef0012f11a863e5111ec56540302a023bc8587b/transformer") 
    transformer = FluxTransformer2DModel.from_pretrained(
            path, 
            use_safetensors=False,
            local_files_only=True,
            torch_dtype=torch.bfloat16)

    pipeline = FluxPipeline.from_pretrained(
        CHECKPOINT,
        revision=REVISION,
        transformer=transformer,
        local_files_only=True,
        torch_dtype=torch.bfloat16,
    ).to("cuda")

    pipeline.transformer.to(memory_format=torch.channels_last)
    pipeline.transformer = torch.compile(pipeline.transformer, mode="max-autotune", fullgraph=False)
    pipeline.vae.to(memory_format=torch.channels_last)
    quantize_(pipeline.vae, int8_weight_only())
    pipeline.vae = torch.compile(pipeline.vae, fullgraph=True, mode="max-autotune")
    
    PROMPT = 'semiconformity, peregrination, quip, twineless, emotionless, tawa, depickle'
    with torch.inference_mode():  
        for _ in range(4):
            pipeline(prompt="onomancy, aftergo, spirantic, Platyhelmia, modificator, drupaceous, jobbernowl, hereness", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256)
    torch.cuda.empty_cache()
    return pipeline

@torch.inference_mode()
def infer(request: TextToImageRequest, pipeline: Pipeline, generator: torch.Generator) -> Image:

    return pipeline(
        request.prompt,
        generator=generator,
        guidance_scale=0.0,
        num_inference_steps=4,
        max_sequence_length=256,
        height=request.height,
        width=request.width,
    ).images[0]


if __name__ == "__main__":
    from time import perf_counter
    PROMPT = 'martyr, semiconformity, peregrination, quip, twineless, emotionless, tawa, depickle'
    request = TextToImageRequest(prompt=PROMPT, 
            height=None,
            width=None,
            seed=666)
    generator = torch.Generator(device="cuda")
    start_time = perf_counter()
    pipe_ = load_pipeline()
    stop_time = perf_counter()
    print(f"Pipeline is loaded in {stop_time - start_time}s")
    for _ in range(4):
        start_time = perf_counter()
        infer(request, pipe_, generator=generator.manual_seed(request.seed))
        stop_time = perf_counter()
        print(f"Request in {stop_time - start_time}s")