language: ar
datasets:
- common_voice
- arabic_speech_corpus
metrics:
- wer
- cer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Arabic by Jonatas Grosman
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice ar
type: common_voice
args: ar
metrics:
- name: Test WER
type: wer
value: 39.59
- name: Test CER
type: cer
value: 18.18
Wav2Vec2-Large-XLSR-53-Arabic
Fine-tuned facebook/wav2vec2-large-xlsr-53 on Arabic using the Common Voice 6.1 and Arabic Speech Corpus. When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned thanks to the GPU credits generously given by the OVHcloud :)
The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint
Usage
The model can be used directly (without a language model) as follows...
Using the HuggingSound library:
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-arabic")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
Writing your own inference script:
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "ar"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-arabic"
SAMPLES = 10
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
for i, predicted_sentence in enumerate(predicted_sentences):
print("-" * 100)
print("Reference:", test_dataset[i]["sentence"])
print("Prediction:", predicted_sentence)
Reference | Prediction |
---|---|
ุฃูุฏูู ููู ุ | ุฃูุฏูู ููู |
ููุณุช ููุงู ู ุณุงูุฉ ุนูู ูุฐู ุงูุฃุฑุถ ุฃุจุนุฏ ู ู ููู ุฃู ุณ. | ููุณุช ูุงูู ู ุณุงูุฉ ุนูู ูุฐู ุงูุฃุฑุถ ุฃุจุนุฏ ู ู ููู ุงูุฃู ุณ ู |
ุฅูู ุชูุจุฑ ุงูู ุดููุฉ. | ุฅูู ุชูุจุฑ ุงูู ุดููุฉ |
ูุฑุบุจ ุฃู ููุชูู ุจู. | ูุฑุบุจ ุฃู ููุชูู ุจู |
ุฅููู ูุง ูุนุฑููู ูู ุงุฐุง ุญุชู. | ุฅููู ูุง ูุนุฑููู ูู ุงุฐุง ุญุชู |
ุณูุณุนุฏูู ู ุณุงุนุฏุชู ุฃู ููุช ุชุญุจ. | ุณูุณุฆุฏููู ุณุงุนุฏุชู ุฃู ููุฏ ุชุญุจ |
ุฃูุญูุจูู ูุธุฑููุฉ ุนูู ูุฉ ุฅููู ูู ุฃู ุญููุงุช ุฒุญู ู ูููุฉ ุจุงููุงู ู ู ู ุงูุฃู ุชุนุฉ ุงูู ูููุฏุฉ. | ุฃุญุจ ูุธุฑูุฉ ุนูู ูุฉ ุฅูู ูู ุฃู ุญู ูุชุฒุญ ุงูู ููููุง ุจุงููุงู ู ู ู ุงูุฃู ุช ุนู ุงูู ูููุฏุฉ |
ุณุฃุดุชุฑู ูู ููู ุงู. | ุณุฃุดุชุฑู ูู ููู ุง |
ุฃูู ุงูู ุดููุฉ ุ | ุฃูู ุงูู ุดูู |
ููููููููู ููุณูุฌูุฏู ู ูุง ููู ุงูุณููู ูุงููุงุชู ููู ูุง ููู ุงููุฃูุฑูุถู ู ููู ุฏูุงุจููุฉู ููุงููู ูููุงุฆูููุฉู ููููู ู ููุง ููุณูุชูููุจูุฑูููู | ูููู ูุณุฌุฏ ู ุง ูู ุงูุณู ุงูุงุช ูู ุง ูู ุงูุฃุฑุถ ู ู ุฏุงุจุฉ ูุงูู ูุงุฆูุฉ ููู ูุง ูุณุชูุจุฑูู |
Evaluation
The model can be evaluated as follows on the Arabic test data of Common Voice.
import torch
import re
import librosa
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "ar"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-arabic"
DEVICE = "cuda"
CHARS_TO_IGNORE = [",", "?", "ยฟ", ".", "!", "ยก", ";", "๏ผ", ":", '""', "%", '"', "๏ฟฝ", "สฟ", "ยท", "แป", "~", "ี",
"ุ", "ุ", "เฅค", "เฅฅ", "ยซ", "ยป", "โ", "โ", "โ", "ใ", "ใ", "โ", "โ", "ใ", "ใ", "(", ")", "[", "]",
"{", "}", "=", "`", "_", "+", "<", ">", "โฆ", "โ", "ยฐ", "ยด", "สพ", "โน", "โบ", "ยฉ", "ยฎ", "โ", "โ", "ใ",
"ใ", "๏น", "๏น", "โง", "๏ฝ", "๏น", "๏ผ", "๏ฝ", "๏ฝ", "๏ผ", "๏ผ", "๏ผป", "๏ผฝ", "ใ", "ใ", "โฅ", "ใฝ",
"ใ", "ใ", "ใ", "ใ", "โจ", "โฉ", "ใ", "๏ผ", "๏ผ", "๏ผ", "โช", "ุ", "/", "\\", "ยบ", "โ", "^", "'", "สป", "ห"]
test_dataset = load_dataset("common_voice", LANG_ID, split="test")
wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
model.to(DEVICE)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
predictions = [x.upper() for x in result["pred_strings"]]
references = [x.upper() for x in result["sentence"]]
print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
Test Result:
In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-05-14). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used.
Model | WER | CER |
---|---|---|
jonatasgrosman/wav2vec2-large-xlsr-53-arabic | 39.59% | 18.18% |
bakrianoo/sinai-voice-ar-stt | 45.30% | 21.84% |
othrif/wav2vec2-large-xlsr-arabic | 45.93% | 20.51% |
kmfoda/wav2vec2-large-xlsr-arabic | 54.14% | 26.07% |
mohammed/wav2vec2-large-xlsr-arabic | 56.11% | 26.79% |
anas/wav2vec2-large-xlsr-arabic | 62.02% | 27.09% |
elgeish/wav2vec2-large-xlsr-53-arabic | 100.00% | 100.56% |
Citation
If you want to cite this model you can use this:
@misc{grosman2021xlsr53-large-arabic,
title={Fine-tuned {XLSR}-53 large model for speech recognition in {A}rabic},
author={Grosman, Jonatas},
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn}},
year={2021}
}