jonatasgrosman's picture
Update README.md
c7c9e1b
|
raw
history blame
5.57 kB
---
language: nl
license: apache-2.0
datasets:
- common_voice
- mozilla-foundation/common_voice_6_0
metrics:
- wer
- cer
tags:
- audio
- automatic-speech-recognition
- hf-asr-leaderboard
- mozilla-foundation/common_voice_6_0
- nl
- robust-speech-event
- speech
- xlsr-fine-tuning-week
model-index:
- name: XLSR Wav2Vec2 Dutch by Jonatas Grosman
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice nl
type: common_voice
args: nl
metrics:
- name: Test WER
type: wer
value: 15.72
- name: Test CER
type: cer
value: 5.35
- name: Test WER (+LM)
type: wer
value: 12.84
- name: Test CER (+LM)
type: cer
value: 4.64
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: nl
metrics:
- name: Dev WER
type: wer
value: 35.79
- name: Dev CER
type: cer
value: 17.67
- name: Dev WER (+LM)
type: wer
value: 31.54
- name: Dev CER (+LM)
type: cer
value: 16.37
---
# Fine-tuned XLSR-53 large model for speech recognition in Dutch
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Dutch using the [Common Voice 6.1](https://huggingface.co/datasets/common_voice) and [CSS10](https://github.com/Kyubyong/css10).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)
The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint
## Usage
The model can be used directly (without a language model) as follows...
Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library:
```python
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-dutch")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
```
Writing your own inference script:
```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "nl"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-dutch"
SAMPLES = 10
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
for i, predicted_sentence in enumerate(predicted_sentences):
print("-" * 100)
print("Reference:", test_dataset[i]["sentence"])
print("Prediction:", predicted_sentence)
```
| Reference | Prediction |
| ------------- | ------------- |
| DE ABORIGINALS ZIJN DE OORSPRONKELIJKE BEWONERS VAN AUSTRALIË. | DE ABBORIGENALS ZIJN DE OORSPRONKELIJKE BEWONERS VAN AUSTRALIË |
| MIJN TOETSENBORD ZIT VOL STOF. | MIJN TOETSENBORD ZIT VOL STOF |
| ZE HAD DE BANK BESCHADIGD MET HAAR SKATEBOARD. | ZE HAD DE BANK BESCHADIGD MET HAAR SCHEETBOORD |
| WAAR LAAT JIJ JE ONDERHOUD DOEN? | WAAR LAAT JIJ HET ONDERHOUD DOEN |
| NA HET LEZEN VAN VELE BEOORDELINGEN HAD ZE EINDELIJK HAAR OOG LATEN VALLEN OP EEN LAPTOP MET EEN QWERTY TOETSENBORD. | NA HET LEZEN VAN VELE BEOORDELINGEN HAD ZE EINDELIJK HAAR OOG LATEN VALLEN OP EEN LAPTOP MET EEN QUERTITOETSEMBORD |
| DE TAMPONS ZIJN OP. | DE TAPONT ZIJN OP |
| MARIJKE KENT OLIVIER NU AL MEER DAN TWEE JAAR. | MAARRIJKEN KENT OLIEVIER NU AL MEER DAN TWEE JAAR |
| HET VOEREN VAN BROOD AAN EENDEN IS EIGENLIJK ONGEZOND VOOR DE BEESTEN. | HET VOEREN VAN BEUROT AAN EINDEN IS EIGENLIJK ONGEZOND VOOR DE BEESTEN |
| PARKET MOET JE STOFZUIGEN, TEGELS MOET JE DWEILEN. | PARKET MOET JE STOF ZUIGEN MAAR TEGELS MOET JE DWEILEN |
| IN ONZE BUURT KENT IEDEREEN ELKAAR. | IN ONZE BUURT KENT IEDEREEN ELKAAR |
## Evaluation
1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test`
```bash
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-dutch --dataset mozilla-foundation/common_voice_6_0 --config nl --split test
```
2. To evaluate on `speech-recognition-community-v2/dev_data`
```bash
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-dutch --dataset speech-recognition-community-v2/dev_data --config nl --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```
## Citation
If you want to cite this model you can use this:
```bibtex
@misc{grosman2021xlsr53-large-dutch,
title={Fine-tuned {XLSR}-53 large model for speech recognition in {D}utch},
author={Grosman, Jonatas},
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-dutch}},
year={2021}
}
```