metadata
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
- hf-asr-leaderboard
- mozilla-foundation/common_voice_8_0
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: XLS-R Wav2Vec2 German by Jonatas Grosman
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: de
metrics:
- name: Test WER
type: wer
value: 10.95
- name: Test CER
type: cer
value: 2.72
- name: Test WER (+LM)
type: wer
value: 8.13
- name: Test CER (+LM)
type: cer
value: 2.18
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: de
metrics:
- name: Dev WER
type: wer
value: 22.68
- name: Dev CER
type: cer
value: 9.17
- name: Dev WER (+LM)
type: wer
value: 17.07
- name: Dev CER (+LM)
type: cer
value: 8.45
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: de
metrics:
- name: Test WER
type: wer
value: 19.67
Fine-tuned XLS-R 1B model for speech recognition in German
Fine-tuned facebook/wav2vec2-xls-r-1b on German using the train and validation splits of Common Voice 8.0, Multilingual TEDx, Multilingual LibriSpeech, and Voxpopuli. When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the HuggingSound tool, and thanks to the GPU credits generously given by the OVHcloud :)
Usage
Using the HuggingSound library:
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-xls-r-1b-german")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
Writing your own inference script:
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "de"
MODEL_ID = "jonatasgrosman/wav2vec2-xls-r-1b-german"
SAMPLES = 10
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
Evaluation Commands
- To evaluate on
mozilla-foundation/common_voice_8_0
with splittest
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-german --dataset mozilla-foundation/common_voice_8_0 --config de --split test
- To evaluate on
speech-recognition-community-v2/dev_data
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-german --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0
Citation
If you want to cite this model you can use this:
@misc{grosman2021xlsr-1b-german,
title={Fine-tuned {XLS-R} 1{B} model for speech recognition in {G}erman},
author={Grosman, Jonatas},
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-german}},
year={2022}
}