jonfrank's picture
Update README.md
9f5c518
|
raw
history blame
2.26 kB
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-amazon-en-es
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-finetuned-amazon-en-es
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It was created by following the [huggingface tutorial](https://huggingface.co/course/chapter7/5?fw=pt).
It achieves the following results on the evaluation set:
- Loss: 3.0173
- Rouge1: 16.7977
- Rouge2: 8.6849
- Rougel: 16.4822
- Rougelsum: 16.4975
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
| 3.4693 | 1.0 | 1209 | 3.1215 | 17.5363 | 8.3875 | 17.0229 | 16.9653 |
| 3.4231 | 2.0 | 2418 | 3.0474 | 16.7927 | 8.3533 | 16.2748 | 16.2379 |
| 3.271 | 3.0 | 3627 | 3.0440 | 16.7233 | 7.9129 | 16.2385 | 16.1915 |
| 3.1885 | 4.0 | 4836 | 3.0264 | 16.3078 | 7.5751 | 15.844 | 15.889 |
| 3.1216 | 5.0 | 6045 | 3.0277 | 17.259 | 8.7504 | 16.8293 | 16.8543 |
| 3.0739 | 6.0 | 7254 | 3.0188 | 16.8374 | 8.6457 | 16.4407 | 16.4743 |
| 3.0393 | 7.0 | 8463 | 3.0161 | 17.3064 | 8.7822 | 16.9423 | 16.9543 |
| 3.0202 | 8.0 | 9672 | 3.0173 | 16.7977 | 8.6849 | 16.4822 | 16.4975 |
### Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1