File size: 5,476 Bytes
1b1da48
27e84d6
 
 
 
 
 
 
 
 
 
 
 
1b1da48
 
27e84d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
license: apache-2.0
base_model: albert/albert-base-v2
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: classify-phishing_real_1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# classify-phishing_real_1

This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co/albert/albert-base-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1185
- Accuracy: 0.9645
- F1: 0.9645
- Precision: 0.9645
- Recall: 0.9645
- Accuracy Label 0: 0.9708
- Accuracy Label 1: 0.9559

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | F1     | Precision | Recall | Accuracy Label 0 | Accuracy Label 1 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:----------------:|:----------------:|
| 0.4991        | 0.1030 | 100  | 0.4748          | 0.7925   | 0.7819 | 0.8136    | 0.7925 | 0.9508           | 0.5747           |
| 0.3087        | 0.2060 | 200  | 0.3052          | 0.8799   | 0.8793 | 0.8799    | 0.8799 | 0.9189           | 0.8262           |
| 0.2974        | 0.3090 | 300  | 0.2390          | 0.9093   | 0.9094 | 0.9095    | 0.9093 | 0.9181           | 0.8972           |
| 0.2644        | 0.4119 | 400  | 0.3068          | 0.8663   | 0.8670 | 0.8887    | 0.8663 | 0.7899           | 0.9715           |
| 0.223         | 0.5149 | 500  | 0.2122          | 0.9154   | 0.9158 | 0.9195    | 0.9154 | 0.8905           | 0.9495           |
| 0.215         | 0.6179 | 600  | 0.2011          | 0.9229   | 0.9222 | 0.9252    | 0.9229 | 0.9714           | 0.8561           |
| 0.1419        | 0.7209 | 700  | 0.1836          | 0.9305   | 0.9300 | 0.9318    | 0.9305 | 0.9690           | 0.8775           |
| 0.1511        | 0.8239 | 800  | 0.1828          | 0.9305   | 0.9308 | 0.9327    | 0.9305 | 0.9145           | 0.9526           |
| 0.173         | 0.9269 | 900  | 0.1544          | 0.9430   | 0.9428 | 0.9433    | 0.9430 | 0.9666           | 0.9107           |
| 0.0986        | 1.0299 | 1000 | 0.1513          | 0.9429   | 0.9430 | 0.9435    | 0.9429 | 0.9384           | 0.9491           |
| 0.1403        | 1.1329 | 1100 | 0.1515          | 0.9426   | 0.9429 | 0.9444    | 0.9426 | 0.9278           | 0.9631           |
| 0.1133        | 1.2358 | 1200 | 0.1394          | 0.9475   | 0.9475 | 0.9475    | 0.9475 | 0.9531           | 0.9397           |
| 0.1117        | 1.3388 | 1300 | 0.1525          | 0.9457   | 0.9459 | 0.9467    | 0.9457 | 0.9371           | 0.9576           |
| 0.1277        | 1.4418 | 1400 | 0.1311          | 0.9490   | 0.9491 | 0.9492    | 0.9490 | 0.9501           | 0.9475           |
| 0.0886        | 1.5448 | 1500 | 0.1375          | 0.9503   | 0.9503 | 0.9503    | 0.9503 | 0.9628           | 0.9331           |
| 0.1273        | 1.6478 | 1600 | 0.1297          | 0.9533   | 0.9533 | 0.9535    | 0.9533 | 0.9536           | 0.9529           |
| 0.1102        | 1.7508 | 1700 | 0.1136          | 0.9578   | 0.9578 | 0.9578    | 0.9578 | 0.9637           | 0.9498           |
| 0.0793        | 1.8538 | 1800 | 0.1269          | 0.9562   | 0.9561 | 0.9563    | 0.9562 | 0.9718           | 0.9348           |
| 0.0995        | 1.9567 | 1900 | 0.1129          | 0.9591   | 0.9590 | 0.9591    | 0.9591 | 0.9702           | 0.9437           |
| 0.0846        | 2.0597 | 2000 | 0.1362          | 0.9533   | 0.9534 | 0.9543    | 0.9533 | 0.9422           | 0.9685           |
| 0.096         | 2.1627 | 2100 | 0.1383          | 0.9563   | 0.9564 | 0.9572    | 0.9563 | 0.9467           | 0.9696           |
| 0.0797        | 2.2657 | 2200 | 0.1137          | 0.9620   | 0.9619 | 0.9619    | 0.9620 | 0.9711           | 0.9494           |
| 0.0602        | 2.3687 | 2300 | 0.1211          | 0.9609   | 0.9609 | 0.9609    | 0.9609 | 0.9664           | 0.9532           |
| 0.0951        | 2.4717 | 2400 | 0.1194          | 0.9614   | 0.9615 | 0.9615    | 0.9614 | 0.9628           | 0.9596           |
| 0.0343        | 2.5747 | 2500 | 0.1237          | 0.9629   | 0.9629 | 0.9630    | 0.9629 | 0.9624           | 0.9634           |
| 0.0512        | 2.6777 | 2600 | 0.1263          | 0.9625   | 0.9625 | 0.9625    | 0.9625 | 0.9738           | 0.9471           |
| 0.0532        | 2.7806 | 2700 | 0.1229          | 0.9633   | 0.9633 | 0.9633    | 0.9633 | 0.9706           | 0.9533           |
| 0.0673        | 2.8836 | 2800 | 0.1206          | 0.9644   | 0.9644 | 0.9644    | 0.9644 | 0.9679           | 0.9596           |
| 0.0209        | 2.9866 | 2900 | 0.1185          | 0.9645   | 0.9645 | 0.9645    | 0.9645 | 0.9709           | 0.9556           |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.2.1
- Datasets 2.20.0
- Tokenizers 0.19.1