EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-07-07_went-g050

This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0916
  • Accuracy: 0.715
  • Exit 0 Accuracy: 0.1125
  • Exit 1 Accuracy: 0.155
  • Exit 2 Accuracy: 0.1925
  • Exit 3 Accuracy: 0.1025
  • Exit 4 Accuracy: 0.0625

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 12
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 24
  • total_train_batch_size: 288
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Accuracy Exit 0 Accuracy Exit 1 Accuracy Exit 2 Accuracy Exit 3 Accuracy Exit 4 Accuracy
No log 0.72 2 2.7602 0.11 0.1075 0.0675 0.0825 0.0625 0.0625
No log 1.72 4 2.7311 0.115 0.1125 0.065 0.09 0.0625 0.0625
No log 2.72 6 2.6960 0.135 0.1125 0.06 0.1 0.0625 0.0625
No log 3.72 8 2.6634 0.1675 0.12 0.0575 0.12 0.0625 0.0625
No log 4.72 10 2.6183 0.1925 0.12 0.0575 0.115 0.0625 0.0625
No log 5.72 12 2.5735 0.205 0.105 0.08 0.12 0.0625 0.0625
No log 6.72 14 2.5417 0.22 0.0975 0.08 0.1275 0.0625 0.0625
No log 7.72 16 2.5080 0.245 0.0975 0.0925 0.1275 0.0625 0.0625
No log 8.72 18 2.4538 0.2875 0.095 0.0975 0.13 0.0625 0.0625
No log 9.72 20 2.4249 0.2975 0.095 0.125 0.13 0.0625 0.0625
No log 10.72 22 2.3646 0.3275 0.095 0.12 0.1175 0.0625 0.0625
No log 11.72 24 2.3061 0.33 0.1 0.1175 0.1125 0.0625 0.0625
No log 12.72 26 2.2542 0.36 0.0975 0.12 0.1175 0.0625 0.0625
No log 13.72 28 2.2104 0.37 0.0975 0.125 0.12 0.0625 0.0625
No log 14.72 30 2.1525 0.3875 0.1025 0.13 0.1225 0.0625 0.0625
No log 15.72 32 2.1066 0.41 0.1 0.14 0.1225 0.0625 0.0625
No log 16.72 34 2.0487 0.4275 0.1025 0.14 0.1275 0.0625 0.0625
No log 17.72 36 1.9907 0.4575 0.1025 0.1375 0.125 0.0625 0.0625
No log 18.72 38 1.9241 0.4925 0.1 0.1425 0.1275 0.0625 0.0625
No log 19.72 40 1.8676 0.51 0.105 0.14 0.13 0.0625 0.0625
No log 20.72 42 1.8174 0.545 0.1075 0.14 0.13 0.0625 0.0625
No log 21.72 44 1.7503 0.5725 0.11 0.1425 0.1325 0.0625 0.0625
No log 22.72 46 1.6928 0.575 0.1075 0.1425 0.1325 0.0625 0.0625
No log 23.72 48 1.6756 0.5775 0.105 0.1475 0.135 0.0625 0.0625
No log 24.72 50 1.6267 0.585 0.11 0.1475 0.14 0.0625 0.0625
No log 25.72 52 1.5650 0.5925 0.11 0.1475 0.1425 0.0625 0.0625
No log 26.72 54 1.5313 0.61 0.115 0.1475 0.1475 0.0625 0.0625
No log 27.72 56 1.5075 0.605 0.115 0.145 0.1525 0.0625 0.0625
No log 28.72 58 1.4637 0.6175 0.115 0.145 0.1525 0.0625 0.0625
No log 29.72 60 1.4198 0.6425 0.115 0.145 0.1525 0.0625 0.0625
No log 30.72 62 1.4085 0.6325 0.115 0.1475 0.1525 0.0625 0.0625
No log 31.72 64 1.3826 0.645 0.115 0.1475 0.155 0.0625 0.0625
No log 32.72 66 1.3459 0.665 0.1125 0.1475 0.155 0.0625 0.0625
No log 33.72 68 1.3265 0.685 0.1125 0.15 0.1575 0.0625 0.0625
No log 34.72 70 1.3064 0.6825 0.1125 0.15 0.16 0.0625 0.0625
No log 35.72 72 1.2841 0.6925 0.1125 0.1525 0.16 0.0625 0.0625
No log 36.72 74 1.2608 0.695 0.115 0.1525 0.1625 0.0625 0.0625
No log 37.72 76 1.2390 0.6975 0.115 0.1525 0.1775 0.0625 0.0625
No log 38.72 78 1.2357 0.6975 0.115 0.1525 0.1775 0.0675 0.0625
No log 39.72 80 1.2216 0.7025 0.115 0.1525 0.185 0.0675 0.0625
No log 40.72 82 1.2015 0.7025 0.115 0.1525 0.185 0.07 0.0625
No log 41.72 84 1.1855 0.7025 0.115 0.155 0.1925 0.07 0.0625
No log 42.72 86 1.1758 0.71 0.115 0.155 0.1875 0.0725 0.0625
No log 43.72 88 1.1656 0.7125 0.115 0.155 0.1875 0.0725 0.0625
No log 44.72 90 1.1476 0.715 0.1175 0.155 0.185 0.0825 0.0625
No log 45.72 92 1.1402 0.71 0.1175 0.155 0.1875 0.0875 0.0625
No log 46.72 94 1.1426 0.705 0.1175 0.155 0.1875 0.085 0.0625
No log 47.72 96 1.1436 0.7075 0.115 0.155 0.1925 0.085 0.0625
No log 48.72 98 1.1371 0.71 0.115 0.155 0.19 0.085 0.0625
No log 49.72 100 1.1229 0.72 0.1125 0.1525 0.19 0.0925 0.0625
No log 50.72 102 1.1113 0.715 0.1125 0.1525 0.1875 0.095 0.0625
No log 51.72 104 1.1014 0.7225 0.1125 0.1525 0.1875 0.095 0.0625
No log 52.72 106 1.0988 0.7225 0.1125 0.1525 0.1875 0.0975 0.0625
No log 53.72 108 1.0996 0.72 0.1125 0.155 0.1875 0.1 0.0625
No log 54.72 110 1.0991 0.715 0.1125 0.155 0.19 0.1 0.0625
No log 55.72 112 1.0979 0.7175 0.1125 0.155 0.1875 0.1025 0.0625
No log 56.72 114 1.0951 0.71 0.1125 0.155 0.1925 0.1025 0.0625
No log 57.72 116 1.0933 0.71 0.1125 0.155 0.1925 0.1025 0.0625
No log 58.72 118 1.0922 0.71 0.1125 0.155 0.1925 0.1025 0.0625
No log 59.72 120 1.0916 0.715 0.1125 0.155 0.1925 0.1025 0.0625

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1.post200
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.