manifesto-dutch-binary-relevance

This model is a fine-tuned version of pdelobelle/robbert-v2-dutch-base.

Example usage

from transformers import pipeline

pipe = pipeline("text-classification", 
                model="joris/manifesto-dutch-binary-relevance",
                trust_remote_code=True)

print(pipe("De digitale versie lees je op d66.nl/verkiezingsprogramma")) 
print(pipe("Duizenden studenten, net afgestudeerden en starters hebben op dit moment geen zicht op een (betaalbare) woning."))


## [{'label': 'LABEL_1', 'score': 0.9609444737434387}] # is 000
## [{'label': 'LABEL_0', 'score': 0.9993253946304321}] # some other code

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

Precision Recall F1-Score Support
0 0.98 0.99 0.99 10043
1 0.88 0.76 0.82 714
Accuracy 0.98 10757
Macro avg 0.93 0.88 0.90 10757
Weighted avg 0.98 0.98 0.98 10757

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamW', 'weight_decay': 0.004, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 2e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Framework versions

  • Transformers 4.34.1
  • TensorFlow 2.14.0
  • Tokenizers 0.14.1
Downloads last month
19
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for joris/manifesto-dutch-binary-relevance

Finetuned
(41)
this model