manifesto-dutch-binary-relevance
This model is a fine-tuned version of pdelobelle/robbert-v2-dutch-base.
Example usage
from transformers import pipeline
pipe = pipeline("text-classification",
model="joris/manifesto-dutch-binary-relevance",
trust_remote_code=True)
print(pipe("De digitale versie lees je op d66.nl/verkiezingsprogramma"))
print(pipe("Duizenden studenten, net afgestudeerden en starters hebben op dit moment geen zicht op een (betaalbare) woning."))
## [{'label': 'LABEL_1', 'score': 0.9609444737434387}] # is 000
## [{'label': 'LABEL_0', 'score': 0.9993253946304321}] # some other code
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
Precision | Recall | F1-Score | Support | |
---|---|---|---|---|
0 | 0.98 | 0.99 | 0.99 | 10043 |
1 | 0.88 | 0.76 | 0.82 | 714 |
Accuracy | 0.98 | 10757 | ||
Macro avg | 0.93 | 0.88 | 0.90 | 10757 |
Weighted avg | 0.98 | 0.98 | 0.98 | 10757 |
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamW', 'weight_decay': 0.004, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 2e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training results
Framework versions
- Transformers 4.34.1
- TensorFlow 2.14.0
- Tokenizers 0.14.1
- Downloads last month
- 19
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for joris/manifesto-dutch-binary-relevance
Base model
pdelobelle/robbert-v2-dutch-base