BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("joshuapb/fine-tuned-matryoshka-1000")
# Run inference
sentences = [
'(1) Joint: join with step 2, where the few-shot examples are structured as (response, verification questions, verification answers); The drawback is that the original response is in the context, so the model may repeat similar hallucination.\n(2) 2-step: separate the verification planning and execution steps, such as the original response doesn’t impact\n(3) Factored: each verification question is answered separately. Say, if a long-form base generation results in multiple verification questions, we would answer each question one-by-one.\n(4) Factor+revise: adding a “cross-checking” step after factored verification execution, conditioned on both the baseline response and the verification question and answer. It detects inconsistency.\n\n\nFinal output: Generate the final, refined output. The output gets revised at this step if any inconsistency is discovered.',
"In what ways does the 'Factor+revise' method enhance the reliability of responses when compared to the 'Joint' and '2-step' methods used for cross-checking?",
'What obstacles arise when depending on the pre-training dataset in the context of extrinsic hallucination affecting model outputs?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8802 |
cosine_accuracy@3 | 0.9844 |
cosine_accuracy@5 | 0.9948 |
cosine_accuracy@10 | 0.9948 |
cosine_precision@1 | 0.8802 |
cosine_precision@3 | 0.3281 |
cosine_precision@5 | 0.199 |
cosine_precision@10 | 0.0995 |
cosine_recall@1 | 0.8802 |
cosine_recall@3 | 0.9844 |
cosine_recall@5 | 0.9948 |
cosine_recall@10 | 0.9948 |
cosine_ndcg@10 | 0.9495 |
cosine_mrr@10 | 0.9338 |
cosine_map@100 | 0.9342 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8854 |
cosine_accuracy@3 | 0.9844 |
cosine_accuracy@5 | 0.9948 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.8854 |
cosine_precision@3 | 0.3281 |
cosine_precision@5 | 0.199 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.8854 |
cosine_recall@3 | 0.9844 |
cosine_recall@5 | 0.9948 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.9537 |
cosine_mrr@10 | 0.9378 |
cosine_map@100 | 0.9378 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.901 |
cosine_accuracy@3 | 0.9844 |
cosine_accuracy@5 | 1.0 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.901 |
cosine_precision@3 | 0.3281 |
cosine_precision@5 | 0.2 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.901 |
cosine_recall@3 | 0.9844 |
cosine_recall@5 | 1.0 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.9588 |
cosine_mrr@10 | 0.9446 |
cosine_map@100 | 0.9446 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9062 |
cosine_accuracy@3 | 0.9844 |
cosine_accuracy@5 | 1.0 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.9062 |
cosine_precision@3 | 0.3281 |
cosine_precision@5 | 0.2 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.9062 |
cosine_recall@3 | 0.9844 |
cosine_recall@5 | 1.0 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.9609 |
cosine_mrr@10 | 0.9475 |
cosine_map@100 | 0.9475 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8906 |
cosine_accuracy@3 | 0.9844 |
cosine_accuracy@5 | 1.0 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.8906 |
cosine_precision@3 | 0.3281 |
cosine_precision@5 | 0.2 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.8906 |
cosine_recall@3 | 0.9844 |
cosine_recall@5 | 1.0 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.9551 |
cosine_mrr@10 | 0.9397 |
cosine_map@100 | 0.9397 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 5lr_scheduler_type
: cosinewarmup_ratio
: 0.1load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.04 | 5 | 4.9678 | - | - | - | - | - |
0.08 | 10 | 4.6482 | - | - | - | - | - |
0.12 | 15 | 5.0735 | - | - | - | - | - |
0.16 | 20 | 4.0336 | - | - | - | - | - |
0.2 | 25 | 3.7572 | - | - | - | - | - |
0.24 | 30 | 4.3054 | - | - | - | - | - |
0.28 | 35 | 2.6705 | - | - | - | - | - |
0.32 | 40 | 3.1929 | - | - | - | - | - |
0.36 | 45 | 3.1139 | - | - | - | - | - |
0.4 | 50 | 2.5219 | - | - | - | - | - |
0.44 | 55 | 3.1847 | - | - | - | - | - |
0.48 | 60 | 2.2306 | - | - | - | - | - |
0.52 | 65 | 2.251 | - | - | - | - | - |
0.56 | 70 | 2.2432 | - | - | - | - | - |
0.6 | 75 | 2.7462 | - | - | - | - | - |
0.64 | 80 | 2.9992 | - | - | - | - | - |
0.68 | 85 | 2.338 | - | - | - | - | - |
0.72 | 90 | 2.0169 | - | - | - | - | - |
0.76 | 95 | 1.257 | - | - | - | - | - |
0.8 | 100 | 1.5015 | - | - | - | - | - |
0.84 | 105 | 1.9198 | - | - | - | - | - |
0.88 | 110 | 2.2154 | - | - | - | - | - |
0.92 | 115 | 2.4026 | - | - | - | - | - |
0.96 | 120 | 1.911 | - | - | - | - | - |
1.0 | 125 | 2.079 | 0.9151 | 0.9098 | 0.9220 | 0.8788 | 0.9251 |
1.04 | 130 | 1.4704 | - | - | - | - | - |
1.08 | 135 | 0.7323 | - | - | - | - | - |
1.12 | 140 | 0.6308 | - | - | - | - | - |
1.16 | 145 | 0.4655 | - | - | - | - | - |
1.2 | 150 | 1.0186 | - | - | - | - | - |
1.24 | 155 | 1.1408 | - | - | - | - | - |
1.28 | 160 | 1.965 | - | - | - | - | - |
1.32 | 165 | 1.5987 | - | - | - | - | - |
1.3600 | 170 | 3.288 | - | - | - | - | - |
1.4 | 175 | 1.632 | - | - | - | - | - |
1.44 | 180 | 1.0376 | - | - | - | - | - |
1.48 | 185 | 0.9466 | - | - | - | - | - |
1.52 | 190 | 1.0106 | - | - | - | - | - |
1.56 | 195 | 1.4875 | - | - | - | - | - |
1.6 | 200 | 1.314 | - | - | - | - | - |
1.6400 | 205 | 1.3022 | - | - | - | - | - |
1.6800 | 210 | 1.5312 | - | - | - | - | - |
1.72 | 215 | 1.7982 | - | - | - | - | - |
1.76 | 220 | 1.7962 | - | - | - | - | - |
1.8 | 225 | 1.5788 | - | - | - | - | - |
1.8400 | 230 | 1.152 | - | - | - | - | - |
1.88 | 235 | 2.0556 | - | - | - | - | - |
1.92 | 240 | 1.3165 | - | - | - | - | - |
1.96 | 245 | 0.6941 | - | - | - | - | - |
2.0 | 250 | 1.2239 | 0.9404 | 0.944 | 0.9427 | 0.9327 | 0.9424 |
2.04 | 255 | 1.0423 | - | - | - | - | - |
2.08 | 260 | 0.8893 | - | - | - | - | - |
2.12 | 265 | 1.2859 | - | - | - | - | - |
2.16 | 270 | 1.4505 | - | - | - | - | - |
2.2 | 275 | 0.2728 | - | - | - | - | - |
2.24 | 280 | 0.6588 | - | - | - | - | - |
2.2800 | 285 | 0.8014 | - | - | - | - | - |
2.32 | 290 | 0.3053 | - | - | - | - | - |
2.36 | 295 | 1.4289 | - | - | - | - | - |
2.4 | 300 | 1.1458 | - | - | - | - | - |
2.44 | 305 | 0.6987 | - | - | - | - | - |
2.48 | 310 | 1.3389 | - | - | - | - | - |
2.52 | 315 | 1.2991 | - | - | - | - | - |
2.56 | 320 | 1.8088 | - | - | - | - | - |
2.6 | 325 | 0.4242 | - | - | - | - | - |
2.64 | 330 | 1.5873 | - | - | - | - | - |
2.68 | 335 | 1.3873 | - | - | - | - | - |
2.7200 | 340 | 1.4297 | - | - | - | - | - |
2.76 | 345 | 2.0637 | - | - | - | - | - |
2.8 | 350 | 1.1252 | - | - | - | - | - |
2.84 | 355 | 0.367 | - | - | - | - | - |
2.88 | 360 | 1.7606 | - | - | - | - | - |
2.92 | 365 | 1.196 | - | - | - | - | - |
2.96 | 370 | 1.8827 | - | - | - | - | - |
3.0 | 375 | 0.6822 | 0.9494 | 0.9479 | 0.9336 | 0.9414 | 0.9405 |
3.04 | 380 | 0.4954 | - | - | - | - | - |
3.08 | 385 | 0.1717 | - | - | - | - | - |
3.12 | 390 | 0.7435 | - | - | - | - | - |
3.16 | 395 | 1.4323 | - | - | - | - | - |
3.2 | 400 | 1.1207 | - | - | - | - | - |
3.24 | 405 | 1.9009 | - | - | - | - | - |
3.2800 | 410 | 1.6706 | - | - | - | - | - |
3.32 | 415 | 0.8378 | - | - | - | - | - |
3.36 | 420 | 1.0911 | - | - | - | - | - |
3.4 | 425 | 0.6565 | - | - | - | - | - |
3.44 | 430 | 1.0302 | - | - | - | - | - |
3.48 | 435 | 0.6425 | - | - | - | - | - |
3.52 | 440 | 1.1472 | - | - | - | - | - |
3.56 | 445 | 1.996 | - | - | - | - | - |
3.6 | 450 | 1.5308 | - | - | - | - | - |
3.64 | 455 | 0.7427 | - | - | - | - | - |
3.68 | 460 | 1.4596 | - | - | - | - | - |
3.7200 | 465 | 1.1984 | - | - | - | - | - |
3.76 | 470 | 0.7601 | - | - | - | - | - |
3.8 | 475 | 1.3544 | - | - | - | - | - |
3.84 | 480 | 1.6655 | - | - | - | - | - |
3.88 | 485 | 1.2596 | - | - | - | - | - |
3.92 | 490 | 0.9451 | - | - | - | - | - |
3.96 | 495 | 0.7079 | - | - | - | - | - |
4.0 | 500 | 1.3471 | 0.9453 | 0.9446 | 0.9404 | 0.9371 | 0.9335 |
4.04 | 505 | 0.4583 | - | - | - | - | - |
4.08 | 510 | 1.288 | - | - | - | - | - |
4.12 | 515 | 1.6946 | - | - | - | - | - |
4.16 | 520 | 1.1239 | - | - | - | - | - |
4.2 | 525 | 1.1026 | - | - | - | - | - |
4.24 | 530 | 1.4121 | - | - | - | - | - |
4.28 | 535 | 1.7113 | - | - | - | - | - |
4.32 | 540 | 0.8389 | - | - | - | - | - |
4.36 | 545 | 0.3117 | - | - | - | - | - |
4.4 | 550 | 0.3144 | - | - | - | - | - |
4.44 | 555 | 1.4694 | - | - | - | - | - |
4.48 | 560 | 1.3233 | - | - | - | - | - |
4.52 | 565 | 0.792 | - | - | - | - | - |
4.5600 | 570 | 0.4881 | - | - | - | - | - |
4.6 | 575 | 0.5097 | - | - | - | - | - |
4.64 | 580 | 1.6377 | - | - | - | - | - |
4.68 | 585 | 0.7273 | - | - | - | - | - |
4.72 | 590 | 1.5464 | - | - | - | - | - |
4.76 | 595 | 1.4392 | - | - | - | - | - |
4.8 | 600 | 1.4384 | - | - | - | - | - |
4.84 | 605 | 0.6375 | - | - | - | - | - |
4.88 | 610 | 1.0528 | - | - | - | - | - |
4.92 | 615 | 0.0276 | - | - | - | - | - |
4.96 | 620 | 0.9604 | - | - | - | - | - |
5.0 | 625 | 0.7219 | 0.9475 | 0.9446 | 0.9378 | 0.9397 | 0.9342 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for joshuapb/fine-tuned-matryoshka-1000
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.880
- Cosine Accuracy@3 on dim 768self-reported0.984
- Cosine Accuracy@5 on dim 768self-reported0.995
- Cosine Accuracy@10 on dim 768self-reported0.995
- Cosine Precision@1 on dim 768self-reported0.880
- Cosine Precision@3 on dim 768self-reported0.328
- Cosine Precision@5 on dim 768self-reported0.199
- Cosine Precision@10 on dim 768self-reported0.099
- Cosine Recall@1 on dim 768self-reported0.880
- Cosine Recall@3 on dim 768self-reported0.984