joshuapb commited on
Commit
8940e5f
·
verified ·
1 Parent(s): 0bf1e8e

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,979 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_mrr@10
23
+ - cosine_map@100
24
+ pipeline_tag: sentence-similarity
25
+ tags:
26
+ - sentence-transformers
27
+ - sentence-similarity
28
+ - feature-extraction
29
+ - generated_from_trainer
30
+ - dataset_size:1000
31
+ - loss:MatryoshkaLoss
32
+ - loss:MultipleNegativesRankingLoss
33
+ widget:
34
+ - source_sentence: 'Revision stage: Edit the output to correct content unsupported
35
+ by evidence while preserving the original content as much as possible. Initialize
36
+ the revised text $y=x$.
37
+
38
+
39
+ (1) Per $(q_i, e_{ij})$, an agreement model (via few-shot prompting + CoT, $(y,
40
+ q, e) \to {0,1}$) checks whether the evidence $e_i$ disagrees with the current
41
+ revised text $y$.
42
+
43
+ (2) Only if a disagreement is detect, the edit model (via few-shot prompting +
44
+ CoT, $(y, q, e) \to \text{ new }y$) outputs a new version of $y$ that aims to
45
+ agree with evidence $e_{ij}$ while otherwise minimally altering $y$.
46
+
47
+ (3) Finally only a limited number $M=5$ of evidence goes into the attribution
48
+ report $A$.
49
+
50
+
51
+
52
+
53
+
54
+ Fig. 12. Illustration of RARR (Retrofit Attribution using Research and Revision).
55
+ (Image source: Gao et al. 2022)
56
+
57
+ When evaluating the revised text $y$, both attribution and preservation metrics
58
+ matter.'
59
+ sentences:
60
+ - What is the impact of claim extraction on the efficiency of query generation within
61
+ various tool querying methodologies?
62
+ - What are the implications of integrating both attribution and preservation metrics
63
+ in the assessment of a revised text for an attribution report?
64
+ - What impact does the calibration of large language models, as discussed in the
65
+ research by Kadavath et al. (2022), have on the consistency and accuracy of their
66
+ responses, particularly in the context of multiple choice questions?
67
+ - source_sentence: 'Fig. 1. Knowledge categorization of close-book QA examples based
68
+ on how likely the model outputs correct answers. (Image source: Gekhman et al.
69
+ 2024)
70
+
71
+ Some interesting observations of the experiments, where dev set accuracy is considered
72
+ a proxy for hallucinations.
73
+
74
+
75
+ Unknown examples are fitted substantially slower than Known.
76
+
77
+ The best dev performance is obtained when the LLM fits the majority of the Known
78
+ training examples but only a few of the Unknown ones. The model starts to hallucinate
79
+ when it learns most of the Unknown examples.
80
+
81
+ Among Known examples, MaybeKnown cases result in better overall performance, more
82
+ essential than HighlyKnown ones.'
83
+ sentences:
84
+ - What are the implications of a language model's performance when it is primarily
85
+ trained on familiar examples compared to a diverse set of unfamiliar examples,
86
+ and how does this relate to the phenomenon of hallucinations in language models?
87
+ - How can the insights gained from the evaluation framework inform the future enhancements
88
+ of AI models, particularly in terms of improving factual accuracy and entity recognition?
89
+ - What role does the MPNet model play in evaluating the faithfulness of reasoning
90
+ paths, particularly in relation to scores of entailment and contradiction?
91
+ - source_sentence: 'Non-context LLM: Prompt LLM directly with <atomic-fact> True or
92
+ False? without additional context.
93
+
94
+ Retrieval→LLM: Prompt with $k$ related passages retrieved from the knowledge source
95
+ as context.
96
+
97
+ Nonparametric probability (NP)): Compute the average likelihood of tokens in the
98
+ atomic fact by a masked LM and use that to make a prediction.
99
+
100
+ Retrieval→LLM + NP: Ensemble of two methods.
101
+
102
+
103
+ Some interesting observations on model hallucination behavior:
104
+
105
+
106
+ Error rates are higher for rarer entities in the task of biography generation.
107
+
108
+ Error rates are higher for facts mentioned later in the generation.
109
+
110
+ Using retrieval to ground the model generation significantly helps reduce hallucination.'
111
+ sentences:
112
+ - What methods does the model employ to generate impactful, non-standard verification
113
+ questions that enhance the fact-checking process?
114
+ - What impact does the timing of fact presentation in AI outputs have on the likelihood
115
+ of generating inaccuracies?
116
+ - What are the benefits of using the 'Factor+revise' strategy in enhancing the reliability
117
+ of verification processes in few-shot learning, particularly when it comes to
118
+ identifying inconsistencies?
119
+ - source_sentence: 'Research stage: Find related documents as evidence.
120
+
121
+
122
+ (1) First use a query generation model (via few-shot prompting, $x \to {q_1, \dots,
123
+ q_N}$) to construct a set of search queries ${q_1, \dots, q_N}$ to verify all
124
+ aspects of each sentence.
125
+
126
+ (2) Run Google search, $K=5$ results per query $q_i$.
127
+
128
+ (3) Utilize a pretrained query-document relevance model to assign relevance scores
129
+ and only retain one most relevant $J=1$ document $e_{i1}, \dots, e_{iJ}$ per query
130
+ $q_i$.
131
+
132
+
133
+
134
+ Revision stage: Edit the output to correct content unsupported by evidence while
135
+ preserving the original content as much as possible. Initialize the revised text
136
+ $y=x$.'
137
+ sentences:
138
+ - In what ways does the process of generating queries facilitate the verification
139
+ of content accuracy, particularly through the lens of evidence-based editing methodologies?
140
+ - What role do attribution and preservation metrics play in assessing the quality
141
+ of revised texts, and how might these factors influence the success of the Evidence
142
+ Disagreement Detection process?
143
+ - What are the practical ways to utilize the F1 @ K metric for assessing how well
144
+ FacTool identifies factual inaccuracies in various fields?
145
+ - source_sentence: '(1) Joint: join with step 2, where the few-shot examples are structured
146
+ as (response, verification questions, verification answers); The drawback is that
147
+ the original response is in the context, so the model may repeat similar hallucination.
148
+
149
+ (2) 2-step: separate the verification planning and execution steps, such as the
150
+ original response doesn’t impact
151
+
152
+ (3) Factored: each verification question is answered separately. Say, if a long-form
153
+ base generation results in multiple verification questions, we would answer each
154
+ question one-by-one.
155
+
156
+ (4) Factor+revise: adding a “cross-checking” step after factored verification
157
+ execution, conditioned on both the baseline response and the verification question
158
+ and answer. It detects inconsistency.
159
+
160
+
161
+
162
+ Final output: Generate the final, refined output. The output gets revised at this
163
+ step if any inconsistency is discovered.'
164
+ sentences:
165
+ - What are the key challenges associated with using a pre-training dataset for world
166
+ knowledge, particularly in maintaining the factual accuracy of the outputs generated
167
+ by the model?
168
+ - What obstacles arise when depending on the pre-training dataset in the context
169
+ of extrinsic hallucination affecting model outputs?
170
+ - In what ways does the 'Factor+revise' method enhance the reliability of responses
171
+ when compared to the 'Joint' and '2-step' methods used for cross-checking?
172
+ model-index:
173
+ - name: BGE base Financial Matryoshka
174
+ results:
175
+ - task:
176
+ type: information-retrieval
177
+ name: Information Retrieval
178
+ dataset:
179
+ name: dim 768
180
+ type: dim_768
181
+ metrics:
182
+ - type: cosine_accuracy@1
183
+ value: 0.8802083333333334
184
+ name: Cosine Accuracy@1
185
+ - type: cosine_accuracy@3
186
+ value: 0.984375
187
+ name: Cosine Accuracy@3
188
+ - type: cosine_accuracy@5
189
+ value: 0.9947916666666666
190
+ name: Cosine Accuracy@5
191
+ - type: cosine_accuracy@10
192
+ value: 0.9947916666666666
193
+ name: Cosine Accuracy@10
194
+ - type: cosine_precision@1
195
+ value: 0.8802083333333334
196
+ name: Cosine Precision@1
197
+ - type: cosine_precision@3
198
+ value: 0.328125
199
+ name: Cosine Precision@3
200
+ - type: cosine_precision@5
201
+ value: 0.19895833333333335
202
+ name: Cosine Precision@5
203
+ - type: cosine_precision@10
204
+ value: 0.09947916666666667
205
+ name: Cosine Precision@10
206
+ - type: cosine_recall@1
207
+ value: 0.8802083333333334
208
+ name: Cosine Recall@1
209
+ - type: cosine_recall@3
210
+ value: 0.984375
211
+ name: Cosine Recall@3
212
+ - type: cosine_recall@5
213
+ value: 0.9947916666666666
214
+ name: Cosine Recall@5
215
+ - type: cosine_recall@10
216
+ value: 0.9947916666666666
217
+ name: Cosine Recall@10
218
+ - type: cosine_ndcg@10
219
+ value: 0.9495062223081544
220
+ name: Cosine Ndcg@10
221
+ - type: cosine_mrr@10
222
+ value: 0.9337673611111109
223
+ name: Cosine Mrr@10
224
+ - type: cosine_map@100
225
+ value: 0.934240845959596
226
+ name: Cosine Map@100
227
+ - task:
228
+ type: information-retrieval
229
+ name: Information Retrieval
230
+ dataset:
231
+ name: dim 512
232
+ type: dim_512
233
+ metrics:
234
+ - type: cosine_accuracy@1
235
+ value: 0.8854166666666666
236
+ name: Cosine Accuracy@1
237
+ - type: cosine_accuracy@3
238
+ value: 0.984375
239
+ name: Cosine Accuracy@3
240
+ - type: cosine_accuracy@5
241
+ value: 0.9947916666666666
242
+ name: Cosine Accuracy@5
243
+ - type: cosine_accuracy@10
244
+ value: 1.0
245
+ name: Cosine Accuracy@10
246
+ - type: cosine_precision@1
247
+ value: 0.8854166666666666
248
+ name: Cosine Precision@1
249
+ - type: cosine_precision@3
250
+ value: 0.328125
251
+ name: Cosine Precision@3
252
+ - type: cosine_precision@5
253
+ value: 0.19895833333333335
254
+ name: Cosine Precision@5
255
+ - type: cosine_precision@10
256
+ value: 0.09999999999999999
257
+ name: Cosine Precision@10
258
+ - type: cosine_recall@1
259
+ value: 0.8854166666666666
260
+ name: Cosine Recall@1
261
+ - type: cosine_recall@3
262
+ value: 0.984375
263
+ name: Cosine Recall@3
264
+ - type: cosine_recall@5
265
+ value: 0.9947916666666666
266
+ name: Cosine Recall@5
267
+ - type: cosine_recall@10
268
+ value: 1.0
269
+ name: Cosine Recall@10
270
+ - type: cosine_ndcg@10
271
+ value: 0.9536782535355709
272
+ name: Cosine Ndcg@10
273
+ - type: cosine_mrr@10
274
+ value: 0.937818287037037
275
+ name: Cosine Mrr@10
276
+ - type: cosine_map@100
277
+ value: 0.937818287037037
278
+ name: Cosine Map@100
279
+ - task:
280
+ type: information-retrieval
281
+ name: Information Retrieval
282
+ dataset:
283
+ name: dim 256
284
+ type: dim_256
285
+ metrics:
286
+ - type: cosine_accuracy@1
287
+ value: 0.9010416666666666
288
+ name: Cosine Accuracy@1
289
+ - type: cosine_accuracy@3
290
+ value: 0.984375
291
+ name: Cosine Accuracy@3
292
+ - type: cosine_accuracy@5
293
+ value: 1.0
294
+ name: Cosine Accuracy@5
295
+ - type: cosine_accuracy@10
296
+ value: 1.0
297
+ name: Cosine Accuracy@10
298
+ - type: cosine_precision@1
299
+ value: 0.9010416666666666
300
+ name: Cosine Precision@1
301
+ - type: cosine_precision@3
302
+ value: 0.328125
303
+ name: Cosine Precision@3
304
+ - type: cosine_precision@5
305
+ value: 0.19999999999999998
306
+ name: Cosine Precision@5
307
+ - type: cosine_precision@10
308
+ value: 0.09999999999999999
309
+ name: Cosine Precision@10
310
+ - type: cosine_recall@1
311
+ value: 0.9010416666666666
312
+ name: Cosine Recall@1
313
+ - type: cosine_recall@3
314
+ value: 0.984375
315
+ name: Cosine Recall@3
316
+ - type: cosine_recall@5
317
+ value: 1.0
318
+ name: Cosine Recall@5
319
+ - type: cosine_recall@10
320
+ value: 1.0
321
+ name: Cosine Recall@10
322
+ - type: cosine_ndcg@10
323
+ value: 0.9587563670488631
324
+ name: Cosine Ndcg@10
325
+ - type: cosine_mrr@10
326
+ value: 0.9446180555555554
327
+ name: Cosine Mrr@10
328
+ - type: cosine_map@100
329
+ value: 0.9446180555555556
330
+ name: Cosine Map@100
331
+ - task:
332
+ type: information-retrieval
333
+ name: Information Retrieval
334
+ dataset:
335
+ name: dim 128
336
+ type: dim_128
337
+ metrics:
338
+ - type: cosine_accuracy@1
339
+ value: 0.90625
340
+ name: Cosine Accuracy@1
341
+ - type: cosine_accuracy@3
342
+ value: 0.984375
343
+ name: Cosine Accuracy@3
344
+ - type: cosine_accuracy@5
345
+ value: 1.0
346
+ name: Cosine Accuracy@5
347
+ - type: cosine_accuracy@10
348
+ value: 1.0
349
+ name: Cosine Accuracy@10
350
+ - type: cosine_precision@1
351
+ value: 0.90625
352
+ name: Cosine Precision@1
353
+ - type: cosine_precision@3
354
+ value: 0.328125
355
+ name: Cosine Precision@3
356
+ - type: cosine_precision@5
357
+ value: 0.19999999999999998
358
+ name: Cosine Precision@5
359
+ - type: cosine_precision@10
360
+ value: 0.09999999999999999
361
+ name: Cosine Precision@10
362
+ - type: cosine_recall@1
363
+ value: 0.90625
364
+ name: Cosine Recall@1
365
+ - type: cosine_recall@3
366
+ value: 0.984375
367
+ name: Cosine Recall@3
368
+ - type: cosine_recall@5
369
+ value: 1.0
370
+ name: Cosine Recall@5
371
+ - type: cosine_recall@10
372
+ value: 1.0
373
+ name: Cosine Recall@10
374
+ - type: cosine_ndcg@10
375
+ value: 0.9609068566179642
376
+ name: Cosine Ndcg@10
377
+ - type: cosine_mrr@10
378
+ value: 0.9474826388888888
379
+ name: Cosine Mrr@10
380
+ - type: cosine_map@100
381
+ value: 0.947482638888889
382
+ name: Cosine Map@100
383
+ - task:
384
+ type: information-retrieval
385
+ name: Information Retrieval
386
+ dataset:
387
+ name: dim 64
388
+ type: dim_64
389
+ metrics:
390
+ - type: cosine_accuracy@1
391
+ value: 0.890625
392
+ name: Cosine Accuracy@1
393
+ - type: cosine_accuracy@3
394
+ value: 0.984375
395
+ name: Cosine Accuracy@3
396
+ - type: cosine_accuracy@5
397
+ value: 1.0
398
+ name: Cosine Accuracy@5
399
+ - type: cosine_accuracy@10
400
+ value: 1.0
401
+ name: Cosine Accuracy@10
402
+ - type: cosine_precision@1
403
+ value: 0.890625
404
+ name: Cosine Precision@1
405
+ - type: cosine_precision@3
406
+ value: 0.328125
407
+ name: Cosine Precision@3
408
+ - type: cosine_precision@5
409
+ value: 0.19999999999999998
410
+ name: Cosine Precision@5
411
+ - type: cosine_precision@10
412
+ value: 0.09999999999999999
413
+ name: Cosine Precision@10
414
+ - type: cosine_recall@1
415
+ value: 0.890625
416
+ name: Cosine Recall@1
417
+ - type: cosine_recall@3
418
+ value: 0.984375
419
+ name: Cosine Recall@3
420
+ - type: cosine_recall@5
421
+ value: 1.0
422
+ name: Cosine Recall@5
423
+ - type: cosine_recall@10
424
+ value: 1.0
425
+ name: Cosine Recall@10
426
+ - type: cosine_ndcg@10
427
+ value: 0.9551401340175182
428
+ name: Cosine Ndcg@10
429
+ - type: cosine_mrr@10
430
+ value: 0.9396701388888888
431
+ name: Cosine Mrr@10
432
+ - type: cosine_map@100
433
+ value: 0.939670138888889
434
+ name: Cosine Map@100
435
+ ---
436
+
437
+ # BGE base Financial Matryoshka
438
+
439
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
440
+
441
+ ## Model Details
442
+
443
+ ### Model Description
444
+ - **Model Type:** Sentence Transformer
445
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
446
+ - **Maximum Sequence Length:** 512 tokens
447
+ - **Output Dimensionality:** 768 tokens
448
+ - **Similarity Function:** Cosine Similarity
449
+ <!-- - **Training Dataset:** Unknown -->
450
+ - **Language:** en
451
+ - **License:** apache-2.0
452
+
453
+ ### Model Sources
454
+
455
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
456
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
457
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
458
+
459
+ ### Full Model Architecture
460
+
461
+ ```
462
+ SentenceTransformer(
463
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
464
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
465
+ (2): Normalize()
466
+ )
467
+ ```
468
+
469
+ ## Usage
470
+
471
+ ### Direct Usage (Sentence Transformers)
472
+
473
+ First install the Sentence Transformers library:
474
+
475
+ ```bash
476
+ pip install -U sentence-transformers
477
+ ```
478
+
479
+ Then you can load this model and run inference.
480
+ ```python
481
+ from sentence_transformers import SentenceTransformer
482
+
483
+ # Download from the 🤗 Hub
484
+ model = SentenceTransformer("joshuapb/fine-tuned-matryoshka-1000")
485
+ # Run inference
486
+ sentences = [
487
+ '(1) Joint: join with step 2, where the few-shot examples are structured as (response, verification questions, verification answers); The drawback is that the original response is in the context, so the model may repeat similar hallucination.\n(2) 2-step: separate the verification planning and execution steps, such as the original response doesn’t impact\n(3) Factored: each verification question is answered separately. Say, if a long-form base generation results in multiple verification questions, we would answer each question one-by-one.\n(4) Factor+revise: adding a “cross-checking” step after factored verification execution, conditioned on both the baseline response and the verification question and answer. It detects inconsistency.\n\n\nFinal output: Generate the final, refined output. The output gets revised at this step if any inconsistency is discovered.',
488
+ "In what ways does the 'Factor+revise' method enhance the reliability of responses when compared to the 'Joint' and '2-step' methods used for cross-checking?",
489
+ 'What obstacles arise when depending on the pre-training dataset in the context of extrinsic hallucination affecting model outputs?',
490
+ ]
491
+ embeddings = model.encode(sentences)
492
+ print(embeddings.shape)
493
+ # [3, 768]
494
+
495
+ # Get the similarity scores for the embeddings
496
+ similarities = model.similarity(embeddings, embeddings)
497
+ print(similarities.shape)
498
+ # [3, 3]
499
+ ```
500
+
501
+ <!--
502
+ ### Direct Usage (Transformers)
503
+
504
+ <details><summary>Click to see the direct usage in Transformers</summary>
505
+
506
+ </details>
507
+ -->
508
+
509
+ <!--
510
+ ### Downstream Usage (Sentence Transformers)
511
+
512
+ You can finetune this model on your own dataset.
513
+
514
+ <details><summary>Click to expand</summary>
515
+
516
+ </details>
517
+ -->
518
+
519
+ <!--
520
+ ### Out-of-Scope Use
521
+
522
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
523
+ -->
524
+
525
+ ## Evaluation
526
+
527
+ ### Metrics
528
+
529
+ #### Information Retrieval
530
+ * Dataset: `dim_768`
531
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
532
+
533
+ | Metric | Value |
534
+ |:--------------------|:-----------|
535
+ | cosine_accuracy@1 | 0.8802 |
536
+ | cosine_accuracy@3 | 0.9844 |
537
+ | cosine_accuracy@5 | 0.9948 |
538
+ | cosine_accuracy@10 | 0.9948 |
539
+ | cosine_precision@1 | 0.8802 |
540
+ | cosine_precision@3 | 0.3281 |
541
+ | cosine_precision@5 | 0.199 |
542
+ | cosine_precision@10 | 0.0995 |
543
+ | cosine_recall@1 | 0.8802 |
544
+ | cosine_recall@3 | 0.9844 |
545
+ | cosine_recall@5 | 0.9948 |
546
+ | cosine_recall@10 | 0.9948 |
547
+ | cosine_ndcg@10 | 0.9495 |
548
+ | cosine_mrr@10 | 0.9338 |
549
+ | **cosine_map@100** | **0.9342** |
550
+
551
+ #### Information Retrieval
552
+ * Dataset: `dim_512`
553
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
554
+
555
+ | Metric | Value |
556
+ |:--------------------|:-----------|
557
+ | cosine_accuracy@1 | 0.8854 |
558
+ | cosine_accuracy@3 | 0.9844 |
559
+ | cosine_accuracy@5 | 0.9948 |
560
+ | cosine_accuracy@10 | 1.0 |
561
+ | cosine_precision@1 | 0.8854 |
562
+ | cosine_precision@3 | 0.3281 |
563
+ | cosine_precision@5 | 0.199 |
564
+ | cosine_precision@10 | 0.1 |
565
+ | cosine_recall@1 | 0.8854 |
566
+ | cosine_recall@3 | 0.9844 |
567
+ | cosine_recall@5 | 0.9948 |
568
+ | cosine_recall@10 | 1.0 |
569
+ | cosine_ndcg@10 | 0.9537 |
570
+ | cosine_mrr@10 | 0.9378 |
571
+ | **cosine_map@100** | **0.9378** |
572
+
573
+ #### Information Retrieval
574
+ * Dataset: `dim_256`
575
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
576
+
577
+ | Metric | Value |
578
+ |:--------------------|:-----------|
579
+ | cosine_accuracy@1 | 0.901 |
580
+ | cosine_accuracy@3 | 0.9844 |
581
+ | cosine_accuracy@5 | 1.0 |
582
+ | cosine_accuracy@10 | 1.0 |
583
+ | cosine_precision@1 | 0.901 |
584
+ | cosine_precision@3 | 0.3281 |
585
+ | cosine_precision@5 | 0.2 |
586
+ | cosine_precision@10 | 0.1 |
587
+ | cosine_recall@1 | 0.901 |
588
+ | cosine_recall@3 | 0.9844 |
589
+ | cosine_recall@5 | 1.0 |
590
+ | cosine_recall@10 | 1.0 |
591
+ | cosine_ndcg@10 | 0.9588 |
592
+ | cosine_mrr@10 | 0.9446 |
593
+ | **cosine_map@100** | **0.9446** |
594
+
595
+ #### Information Retrieval
596
+ * Dataset: `dim_128`
597
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
598
+
599
+ | Metric | Value |
600
+ |:--------------------|:-----------|
601
+ | cosine_accuracy@1 | 0.9062 |
602
+ | cosine_accuracy@3 | 0.9844 |
603
+ | cosine_accuracy@5 | 1.0 |
604
+ | cosine_accuracy@10 | 1.0 |
605
+ | cosine_precision@1 | 0.9062 |
606
+ | cosine_precision@3 | 0.3281 |
607
+ | cosine_precision@5 | 0.2 |
608
+ | cosine_precision@10 | 0.1 |
609
+ | cosine_recall@1 | 0.9062 |
610
+ | cosine_recall@3 | 0.9844 |
611
+ | cosine_recall@5 | 1.0 |
612
+ | cosine_recall@10 | 1.0 |
613
+ | cosine_ndcg@10 | 0.9609 |
614
+ | cosine_mrr@10 | 0.9475 |
615
+ | **cosine_map@100** | **0.9475** |
616
+
617
+ #### Information Retrieval
618
+ * Dataset: `dim_64`
619
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
620
+
621
+ | Metric | Value |
622
+ |:--------------------|:-----------|
623
+ | cosine_accuracy@1 | 0.8906 |
624
+ | cosine_accuracy@3 | 0.9844 |
625
+ | cosine_accuracy@5 | 1.0 |
626
+ | cosine_accuracy@10 | 1.0 |
627
+ | cosine_precision@1 | 0.8906 |
628
+ | cosine_precision@3 | 0.3281 |
629
+ | cosine_precision@5 | 0.2 |
630
+ | cosine_precision@10 | 0.1 |
631
+ | cosine_recall@1 | 0.8906 |
632
+ | cosine_recall@3 | 0.9844 |
633
+ | cosine_recall@5 | 1.0 |
634
+ | cosine_recall@10 | 1.0 |
635
+ | cosine_ndcg@10 | 0.9551 |
636
+ | cosine_mrr@10 | 0.9397 |
637
+ | **cosine_map@100** | **0.9397** |
638
+
639
+ <!--
640
+ ## Bias, Risks and Limitations
641
+
642
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
643
+ -->
644
+
645
+ <!--
646
+ ### Recommendations
647
+
648
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
649
+ -->
650
+
651
+ ## Training Details
652
+
653
+ ### Training Hyperparameters
654
+ #### Non-Default Hyperparameters
655
+
656
+ - `eval_strategy`: epoch
657
+ - `per_device_eval_batch_size`: 16
658
+ - `learning_rate`: 2e-05
659
+ - `num_train_epochs`: 5
660
+ - `lr_scheduler_type`: cosine
661
+ - `warmup_ratio`: 0.1
662
+ - `load_best_model_at_end`: True
663
+
664
+ #### All Hyperparameters
665
+ <details><summary>Click to expand</summary>
666
+
667
+ - `overwrite_output_dir`: False
668
+ - `do_predict`: False
669
+ - `eval_strategy`: epoch
670
+ - `prediction_loss_only`: True
671
+ - `per_device_train_batch_size`: 8
672
+ - `per_device_eval_batch_size`: 16
673
+ - `per_gpu_train_batch_size`: None
674
+ - `per_gpu_eval_batch_size`: None
675
+ - `gradient_accumulation_steps`: 1
676
+ - `eval_accumulation_steps`: None
677
+ - `learning_rate`: 2e-05
678
+ - `weight_decay`: 0.0
679
+ - `adam_beta1`: 0.9
680
+ - `adam_beta2`: 0.999
681
+ - `adam_epsilon`: 1e-08
682
+ - `max_grad_norm`: 1.0
683
+ - `num_train_epochs`: 5
684
+ - `max_steps`: -1
685
+ - `lr_scheduler_type`: cosine
686
+ - `lr_scheduler_kwargs`: {}
687
+ - `warmup_ratio`: 0.1
688
+ - `warmup_steps`: 0
689
+ - `log_level`: passive
690
+ - `log_level_replica`: warning
691
+ - `log_on_each_node`: True
692
+ - `logging_nan_inf_filter`: True
693
+ - `save_safetensors`: True
694
+ - `save_on_each_node`: False
695
+ - `save_only_model`: False
696
+ - `restore_callback_states_from_checkpoint`: False
697
+ - `no_cuda`: False
698
+ - `use_cpu`: False
699
+ - `use_mps_device`: False
700
+ - `seed`: 42
701
+ - `data_seed`: None
702
+ - `jit_mode_eval`: False
703
+ - `use_ipex`: False
704
+ - `bf16`: False
705
+ - `fp16`: False
706
+ - `fp16_opt_level`: O1
707
+ - `half_precision_backend`: auto
708
+ - `bf16_full_eval`: False
709
+ - `fp16_full_eval`: False
710
+ - `tf32`: None
711
+ - `local_rank`: 0
712
+ - `ddp_backend`: None
713
+ - `tpu_num_cores`: None
714
+ - `tpu_metrics_debug`: False
715
+ - `debug`: []
716
+ - `dataloader_drop_last`: False
717
+ - `dataloader_num_workers`: 0
718
+ - `dataloader_prefetch_factor`: None
719
+ - `past_index`: -1
720
+ - `disable_tqdm`: False
721
+ - `remove_unused_columns`: True
722
+ - `label_names`: None
723
+ - `load_best_model_at_end`: True
724
+ - `ignore_data_skip`: False
725
+ - `fsdp`: []
726
+ - `fsdp_min_num_params`: 0
727
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
728
+ - `fsdp_transformer_layer_cls_to_wrap`: None
729
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
730
+ - `deepspeed`: None
731
+ - `label_smoothing_factor`: 0.0
732
+ - `optim`: adamw_torch
733
+ - `optim_args`: None
734
+ - `adafactor`: False
735
+ - `group_by_length`: False
736
+ - `length_column_name`: length
737
+ - `ddp_find_unused_parameters`: None
738
+ - `ddp_bucket_cap_mb`: None
739
+ - `ddp_broadcast_buffers`: False
740
+ - `dataloader_pin_memory`: True
741
+ - `dataloader_persistent_workers`: False
742
+ - `skip_memory_metrics`: True
743
+ - `use_legacy_prediction_loop`: False
744
+ - `push_to_hub`: False
745
+ - `resume_from_checkpoint`: None
746
+ - `hub_model_id`: None
747
+ - `hub_strategy`: every_save
748
+ - `hub_private_repo`: False
749
+ - `hub_always_push`: False
750
+ - `gradient_checkpointing`: False
751
+ - `gradient_checkpointing_kwargs`: None
752
+ - `include_inputs_for_metrics`: False
753
+ - `eval_do_concat_batches`: True
754
+ - `fp16_backend`: auto
755
+ - `push_to_hub_model_id`: None
756
+ - `push_to_hub_organization`: None
757
+ - `mp_parameters`:
758
+ - `auto_find_batch_size`: False
759
+ - `full_determinism`: False
760
+ - `torchdynamo`: None
761
+ - `ray_scope`: last
762
+ - `ddp_timeout`: 1800
763
+ - `torch_compile`: False
764
+ - `torch_compile_backend`: None
765
+ - `torch_compile_mode`: None
766
+ - `dispatch_batches`: None
767
+ - `split_batches`: None
768
+ - `include_tokens_per_second`: False
769
+ - `include_num_input_tokens_seen`: False
770
+ - `neftune_noise_alpha`: None
771
+ - `optim_target_modules`: None
772
+ - `batch_eval_metrics`: False
773
+ - `eval_on_start`: False
774
+ - `batch_sampler`: batch_sampler
775
+ - `multi_dataset_batch_sampler`: proportional
776
+
777
+ </details>
778
+
779
+ ### Training Logs
780
+ <details><summary>Click to expand</summary>
781
+
782
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
783
+ |:-------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
784
+ | 0.04 | 5 | 4.9678 | - | - | - | - | - |
785
+ | 0.08 | 10 | 4.6482 | - | - | - | - | - |
786
+ | 0.12 | 15 | 5.0735 | - | - | - | - | - |
787
+ | 0.16 | 20 | 4.0336 | - | - | - | - | - |
788
+ | 0.2 | 25 | 3.7572 | - | - | - | - | - |
789
+ | 0.24 | 30 | 4.3054 | - | - | - | - | - |
790
+ | 0.28 | 35 | 2.6705 | - | - | - | - | - |
791
+ | 0.32 | 40 | 3.1929 | - | - | - | - | - |
792
+ | 0.36 | 45 | 3.1139 | - | - | - | - | - |
793
+ | 0.4 | 50 | 2.5219 | - | - | - | - | - |
794
+ | 0.44 | 55 | 3.1847 | - | - | - | - | - |
795
+ | 0.48 | 60 | 2.2306 | - | - | - | - | - |
796
+ | 0.52 | 65 | 2.251 | - | - | - | - | - |
797
+ | 0.56 | 70 | 2.2432 | - | - | - | - | - |
798
+ | 0.6 | 75 | 2.7462 | - | - | - | - | - |
799
+ | 0.64 | 80 | 2.9992 | - | - | - | - | - |
800
+ | 0.68 | 85 | 2.338 | - | - | - | - | - |
801
+ | 0.72 | 90 | 2.0169 | - | - | - | - | - |
802
+ | 0.76 | 95 | 1.257 | - | - | - | - | - |
803
+ | 0.8 | 100 | 1.5015 | - | - | - | - | - |
804
+ | 0.84 | 105 | 1.9198 | - | - | - | - | - |
805
+ | 0.88 | 110 | 2.2154 | - | - | - | - | - |
806
+ | 0.92 | 115 | 2.4026 | - | - | - | - | - |
807
+ | 0.96 | 120 | 1.911 | - | - | - | - | - |
808
+ | 1.0 | 125 | 2.079 | 0.9151 | 0.9098 | 0.9220 | 0.8788 | 0.9251 |
809
+ | 1.04 | 130 | 1.4704 | - | - | - | - | - |
810
+ | 1.08 | 135 | 0.7323 | - | - | - | - | - |
811
+ | 1.12 | 140 | 0.6308 | - | - | - | - | - |
812
+ | 1.16 | 145 | 0.4655 | - | - | - | - | - |
813
+ | 1.2 | 150 | 1.0186 | - | - | - | - | - |
814
+ | 1.24 | 155 | 1.1408 | - | - | - | - | - |
815
+ | 1.28 | 160 | 1.965 | - | - | - | - | - |
816
+ | 1.32 | 165 | 1.5987 | - | - | - | - | - |
817
+ | 1.3600 | 170 | 3.288 | - | - | - | - | - |
818
+ | 1.4 | 175 | 1.632 | - | - | - | - | - |
819
+ | 1.44 | 180 | 1.0376 | - | - | - | - | - |
820
+ | 1.48 | 185 | 0.9466 | - | - | - | - | - |
821
+ | 1.52 | 190 | 1.0106 | - | - | - | - | - |
822
+ | 1.56 | 195 | 1.4875 | - | - | - | - | - |
823
+ | 1.6 | 200 | 1.314 | - | - | - | - | - |
824
+ | 1.6400 | 205 | 1.3022 | - | - | - | - | - |
825
+ | 1.6800 | 210 | 1.5312 | - | - | - | - | - |
826
+ | 1.72 | 215 | 1.7982 | - | - | - | - | - |
827
+ | 1.76 | 220 | 1.7962 | - | - | - | - | - |
828
+ | 1.8 | 225 | 1.5788 | - | - | - | - | - |
829
+ | 1.8400 | 230 | 1.152 | - | - | - | - | - |
830
+ | 1.88 | 235 | 2.0556 | - | - | - | - | - |
831
+ | 1.92 | 240 | 1.3165 | - | - | - | - | - |
832
+ | 1.96 | 245 | 0.6941 | - | - | - | - | - |
833
+ | **2.0** | **250** | **1.2239** | **0.9404** | **0.944** | **0.9427** | **0.9327** | **0.9424** |
834
+ | 2.04 | 255 | 1.0423 | - | - | - | - | - |
835
+ | 2.08 | 260 | 0.8893 | - | - | - | - | - |
836
+ | 2.12 | 265 | 1.2859 | - | - | - | - | - |
837
+ | 2.16 | 270 | 1.4505 | - | - | - | - | - |
838
+ | 2.2 | 275 | 0.2728 | - | - | - | - | - |
839
+ | 2.24 | 280 | 0.6588 | - | - | - | - | - |
840
+ | 2.2800 | 285 | 0.8014 | - | - | - | - | - |
841
+ | 2.32 | 290 | 0.3053 | - | - | - | - | - |
842
+ | 2.36 | 295 | 1.4289 | - | - | - | - | - |
843
+ | 2.4 | 300 | 1.1458 | - | - | - | - | - |
844
+ | 2.44 | 305 | 0.6987 | - | - | - | - | - |
845
+ | 2.48 | 310 | 1.3389 | - | - | - | - | - |
846
+ | 2.52 | 315 | 1.2991 | - | - | - | - | - |
847
+ | 2.56 | 320 | 1.8088 | - | - | - | - | - |
848
+ | 2.6 | 325 | 0.4242 | - | - | - | - | - |
849
+ | 2.64 | 330 | 1.5873 | - | - | - | - | - |
850
+ | 2.68 | 335 | 1.3873 | - | - | - | - | - |
851
+ | 2.7200 | 340 | 1.4297 | - | - | - | - | - |
852
+ | 2.76 | 345 | 2.0637 | - | - | - | - | - |
853
+ | 2.8 | 350 | 1.1252 | - | - | - | - | - |
854
+ | 2.84 | 355 | 0.367 | - | - | - | - | - |
855
+ | 2.88 | 360 | 1.7606 | - | - | - | - | - |
856
+ | 2.92 | 365 | 1.196 | - | - | - | - | - |
857
+ | 2.96 | 370 | 1.8827 | - | - | - | - | - |
858
+ | 3.0 | 375 | 0.6822 | 0.9494 | 0.9479 | 0.9336 | 0.9414 | 0.9405 |
859
+ | 3.04 | 380 | 0.4954 | - | - | - | - | - |
860
+ | 3.08 | 385 | 0.1717 | - | - | - | - | - |
861
+ | 3.12 | 390 | 0.7435 | - | - | - | - | - |
862
+ | 3.16 | 395 | 1.4323 | - | - | - | - | - |
863
+ | 3.2 | 400 | 1.1207 | - | - | - | - | - |
864
+ | 3.24 | 405 | 1.9009 | - | - | - | - | - |
865
+ | 3.2800 | 410 | 1.6706 | - | - | - | - | - |
866
+ | 3.32 | 415 | 0.8378 | - | - | - | - | - |
867
+ | 3.36 | 420 | 1.0911 | - | - | - | - | - |
868
+ | 3.4 | 425 | 0.6565 | - | - | - | - | - |
869
+ | 3.44 | 430 | 1.0302 | - | - | - | - | - |
870
+ | 3.48 | 435 | 0.6425 | - | - | - | - | - |
871
+ | 3.52 | 440 | 1.1472 | - | - | - | - | - |
872
+ | 3.56 | 445 | 1.996 | - | - | - | - | - |
873
+ | 3.6 | 450 | 1.5308 | - | - | - | - | - |
874
+ | 3.64 | 455 | 0.7427 | - | - | - | - | - |
875
+ | 3.68 | 460 | 1.4596 | - | - | - | - | - |
876
+ | 3.7200 | 465 | 1.1984 | - | - | - | - | - |
877
+ | 3.76 | 470 | 0.7601 | - | - | - | - | - |
878
+ | 3.8 | 475 | 1.3544 | - | - | - | - | - |
879
+ | 3.84 | 480 | 1.6655 | - | - | - | - | - |
880
+ | 3.88 | 485 | 1.2596 | - | - | - | - | - |
881
+ | 3.92 | 490 | 0.9451 | - | - | - | - | - |
882
+ | 3.96 | 495 | 0.7079 | - | - | - | - | - |
883
+ | 4.0 | 500 | 1.3471 | 0.9453 | 0.9446 | 0.9404 | 0.9371 | 0.9335 |
884
+ | 4.04 | 505 | 0.4583 | - | - | - | - | - |
885
+ | 4.08 | 510 | 1.288 | - | - | - | - | - |
886
+ | 4.12 | 515 | 1.6946 | - | - | - | - | - |
887
+ | 4.16 | 520 | 1.1239 | - | - | - | - | - |
888
+ | 4.2 | 525 | 1.1026 | - | - | - | - | - |
889
+ | 4.24 | 530 | 1.4121 | - | - | - | - | - |
890
+ | 4.28 | 535 | 1.7113 | - | - | - | - | - |
891
+ | 4.32 | 540 | 0.8389 | - | - | - | - | - |
892
+ | 4.36 | 545 | 0.3117 | - | - | - | - | - |
893
+ | 4.4 | 550 | 0.3144 | - | - | - | - | - |
894
+ | 4.44 | 555 | 1.4694 | - | - | - | - | - |
895
+ | 4.48 | 560 | 1.3233 | - | - | - | - | - |
896
+ | 4.52 | 565 | 0.792 | - | - | - | - | - |
897
+ | 4.5600 | 570 | 0.4881 | - | - | - | - | - |
898
+ | 4.6 | 575 | 0.5097 | - | - | - | - | - |
899
+ | 4.64 | 580 | 1.6377 | - | - | - | - | - |
900
+ | 4.68 | 585 | 0.7273 | - | - | - | - | - |
901
+ | 4.72 | 590 | 1.5464 | - | - | - | - | - |
902
+ | 4.76 | 595 | 1.4392 | - | - | - | - | - |
903
+ | 4.8 | 600 | 1.4384 | - | - | - | - | - |
904
+ | 4.84 | 605 | 0.6375 | - | - | - | - | - |
905
+ | 4.88 | 610 | 1.0528 | - | - | - | - | - |
906
+ | 4.92 | 615 | 0.0276 | - | - | - | - | - |
907
+ | 4.96 | 620 | 0.9604 | - | - | - | - | - |
908
+ | 5.0 | 625 | 0.7219 | 0.9475 | 0.9446 | 0.9378 | 0.9397 | 0.9342 |
909
+
910
+ * The bold row denotes the saved checkpoint.
911
+ </details>
912
+
913
+ ### Framework Versions
914
+ - Python: 3.10.12
915
+ - Sentence Transformers: 3.0.1
916
+ - Transformers: 4.42.4
917
+ - PyTorch: 2.3.1+cu121
918
+ - Accelerate: 0.32.1
919
+ - Datasets: 2.21.0
920
+ - Tokenizers: 0.19.1
921
+
922
+ ## Citation
923
+
924
+ ### BibTeX
925
+
926
+ #### Sentence Transformers
927
+ ```bibtex
928
+ @inproceedings{reimers-2019-sentence-bert,
929
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
930
+ author = "Reimers, Nils and Gurevych, Iryna",
931
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
932
+ month = "11",
933
+ year = "2019",
934
+ publisher = "Association for Computational Linguistics",
935
+ url = "https://arxiv.org/abs/1908.10084",
936
+ }
937
+ ```
938
+
939
+ #### MatryoshkaLoss
940
+ ```bibtex
941
+ @misc{kusupati2024matryoshka,
942
+ title={Matryoshka Representation Learning},
943
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
944
+ year={2024},
945
+ eprint={2205.13147},
946
+ archivePrefix={arXiv},
947
+ primaryClass={cs.LG}
948
+ }
949
+ ```
950
+
951
+ #### MultipleNegativesRankingLoss
952
+ ```bibtex
953
+ @misc{henderson2017efficient,
954
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
955
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
956
+ year={2017},
957
+ eprint={1705.00652},
958
+ archivePrefix={arXiv},
959
+ primaryClass={cs.CL}
960
+ }
961
+ ```
962
+
963
+ <!--
964
+ ## Glossary
965
+
966
+ *Clearly define terms in order to be accessible across audiences.*
967
+ -->
968
+
969
+ <!--
970
+ ## Model Card Authors
971
+
972
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
973
+ -->
974
+
975
+ <!--
976
+ ## Model Card Contact
977
+
978
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
979
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "fine-tuned-matryoshka-1000",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.42.4",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cdc269cebe22fdfbe50ecfa92eb64f63b070c37c8d297df898784ba0877fa51
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff