distilbert-NER-conll2003

This model is a fine-tuned version of dslim/distilbert-NER on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Precision: 0.8732
  • Recall: 0.8964
  • F1: 0.8847
  • Accuracy: 0.9751

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0605 1.0 3922 nan 0.8717 0.8877 0.8796 0.9742
0.0296 2.0 7844 nan 0.8732 0.8964 0.8847 0.9751

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.2.2
  • Datasets 2.20.0
  • Tokenizers 0.13.3
Downloads last month
7
Inference API
Unable to determine this model's library. Check the docs .

Model tree for joshuaphua/distilbert-NER-conll2003

Finetuned
(9)
this model

Dataset used to train joshuaphua/distilbert-NER-conll2003

Evaluation results