joshuaphua commited on
Commit
ad73951
·
verified ·
1 Parent(s): 6b65251

End of training

Browse files
Files changed (2) hide show
  1. README.md +91 -0
  2. pytorch_model.bin +1 -1
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: dslim/distilbert-NER
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - conll2003
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: distilbert-NER-conll2003
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: conll2003
21
+ type: conll2003
22
+ config: conll2003
23
+ split: test
24
+ args: conll2003
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.8708677685950413
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.8955382436260623
32
+ - name: F1
33
+ type: f1
34
+ value: 0.8830307262569833
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9751480564229568
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # distilbert-NER-conll2003
44
+
45
+ This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the conll2003 dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.1916
48
+ - Precision: 0.8709
49
+ - Recall: 0.8955
50
+ - F1: 0.8830
51
+ - Accuracy: 0.9751
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 16
72
+ - eval_batch_size: 16
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 2
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.1003 | 1.0 | 3922 | 0.1851 | 0.8638 | 0.8835 | 0.8735 | 0.9736 |
83
+ | 0.0696 | 2.0 | 7844 | 0.1916 | 0.8709 | 0.8955 | 0.8830 | 0.9751 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - Transformers 4.33.2
89
+ - Pytorch 2.2.2
90
+ - Datasets 2.20.0
91
+ - Tokenizers 0.13.3
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8c1f0d40af6c64a2c63c5a189a982a62f9aa27a5e7493c999633356a59ffdb2f
3
  size 260825186
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b7cba10b1bf8c1d1b2b29d46058203f33c2180310ea5ad7fe4a3b4043ce35b1
3
  size 260825186