joshuaphua commited on
Commit
bfca4b5
1 Parent(s): aee0b17

End of training

Browse files
Files changed (2) hide show
  1. README.md +11 -11
  2. pytorch_model.bin +1 -1
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.8493006993006993
29
  - name: Recall
30
  type: recall
31
- value: 0.8601274787535411
32
  - name: F1
33
  type: f1
34
- value: 0.854679802955665
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9687950899106278
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the conll2003 dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: nan
48
- - Precision: 0.8493
49
- - Recall: 0.8601
50
- - F1: 0.8547
51
- - Accuracy: 0.9688
52
 
53
  ## Model description
54
 
@@ -79,8 +79,8 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.0901 | 1.0 | 3922 | nan | 0.8591 | 0.8656 | 0.8623 | 0.9706 |
83
- | 0.0498 | 2.0 | 7844 | nan | 0.8493 | 0.8601 | 0.8547 | 0.9688 |
84
 
85
 
86
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.8735552872175263
29
  - name: Recall
30
  type: recall
31
+ value: 0.896600566572238
32
  - name: F1
33
  type: f1
34
+ value: 0.8849279161205766
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9755572305373102
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the conll2003 dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.1932
48
+ - Precision: 0.8736
49
+ - Recall: 0.8966
50
+ - F1: 0.8849
51
+ - Accuracy: 0.9756
52
 
53
  ## Model description
54
 
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.0567 | 1.0 | 3922 | 0.1809 | 0.8698 | 0.8904 | 0.8800 | 0.9750 |
83
+ | 0.0245 | 2.0 | 7844 | 0.1932 | 0.8736 | 0.8966 | 0.8849 | 0.9756 |
84
 
85
 
86
  ### Framework versions
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ceb87394da29510f4313357e9cd9e7a478f8ef10068accfd773efdf184a4f1bd
3
  size 260825186
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b324c73ec766fe7a16234db66602009d0c409c4065420c424440f1d1ebce49e0
3
  size 260825186