Swallow-MS-7b-v0.1-ChatVector
Japanese "instruction tuned" model made by the technique of Chat Vector
The weights of this model are obtained not by any instruction tuning but by the following arithmetic:
Swallow-MS-7b-v0.1 + Mistral-7B-Instruct-v0.2 - Mistral-7B-v0.1
Chat Vectorの手法を使って、学習済み重みの足し引きのみでSwallow-MS-7b-v0.1モデルにチャット形式の対話能力を与えたモデルです。
詳細はこちらの日本語記事で解説しています。
Instruction format
The promot format should be the same as Mistral-7B-Instruct-v0.2.
E.g.
text = "<s>[INST] What is your favourite condiment? [/INST]"
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
"[INST] Do you have mayonnaise recipes? [/INST]"
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_name = "jovyan/Swallow-MS-7b-v0.1-ChatVector"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
)
prompt = "<s>[INST] 東京工業大学のキャンパスの特色を元気よく説明してください。 [/INST]"
input_ids = tokenizer.encode(
prompt,
add_special_tokens=False,
return_tensors="pt"
)
tokens = model.generate(
input_ids.to(device=model.device),
max_new_tokens=128,
temperature=0.99,
top_p=0.95,
do_sample=True,
)
out = tokenizer.decode(tokens[0], skip_special_tokens=True)
print(out)
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.