File size: 2,218 Bytes
5cf9de9
 
837105b
 
 
 
 
 
5cf9de9
837105b
 
 
 
f25c81d
837105b
 
f25c81d
 
 
5ff373f
f25c81d
837105b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
license: apache-2.0
language:
- ja
- en
library_name: transformers
pipeline_tag: text-generation
model_type: mistral
---
# Swallow-MS-7b-v0.1-ChatVector

Japanese "instruction tuned" model made by the technique of [Chat Vector](https://arxiv.org/abs/2310.04799)

The weights of this model are obtained not by any instruction tuning but by the following arithmetic:  
> [Swallow-MS-7b-v0.1](https://huggingface.co/tokyotech-llm/Swallow-MS-7b-v0.1) + [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) - [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)

-----------------------  
[Chat Vector](https://arxiv.org/abs/2310.04799)の手法を使って、学習済み重みの足し引きのみで[Swallow-MS-7b-v0.1](https://huggingface.co/tokyotech-llm/Swallow-MS-7b-v0.1)モデルにチャット形式の対話能力を与えたモデルです。

詳細は[こちらの日本語記事](https://qiita.com/jovyan/items/ee6affa5ee5bdaada6b4)で解説しています。

## Instruction format

The promot format should be the same as [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2).

E.g.
```
text = "<s>[INST] What is your favourite condiment? [/INST]"
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
"[INST] Do you have mayonnaise recipes? [/INST]"
```

## Usage

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_name = "jovyan/Swallow-MS-7b-v0.1-ChatVector"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)

prompt = "<s>[INST] 東京工業大学のキャンパスの特色を元気よく説明してください。 [/INST]"
input_ids = tokenizer.encode(
    prompt,
    add_special_tokens=False,
    return_tensors="pt"
)
tokens = model.generate(
    input_ids.to(device=model.device),
    max_new_tokens=128,
    temperature=0.99,
    top_p=0.95,
    do_sample=True,
)

out = tokenizer.decode(tokens[0], skip_special_tokens=True)
print(out)
```