Chocolatine-3B-Instruct-DPO-v1.2

Best version of Chocolatine-3B for French.
The model supports 128K context length.

DPO fine-tuned of microsoft/Phi-3.5-mini-instruct (3.82B params)
using the jpacifico/french-orca-dpo-pairs-revised rlhf dataset.
Training in French also improves the model in English, surpassing the performances of its base model.

MT-Bench-French

Chocolatine-3B-Instruct-DPO-v1.2 is outperforming Phi-3-medium-4k-instruct (14B) and its base model Phi-3.5-mini-instruct on MT-Bench-French, used with multilingual-mt-bench and GPT-4-Turbo as LLM-judge.

########## First turn ##########
                                             score
model                                 turn        
gpt-4o-mini                           1     9.2875
Chocolatine-14B-Instruct-4k-DPO       1     8.6375
Chocolatine-14B-Instruct-DPO-v1.2     1     8.6125
Phi-3.5-mini-instruct                 1     8.5250
Chocolatine-3B-Instruct-DPO-v1.2      1     8.3750
Phi-3-medium-4k-instruct              1     8.2250
gpt-3.5-turbo                         1     8.1375
Chocolatine-3B-Instruct-DPO-Revised   1     7.9875
Daredevil-8B                          1     7.8875
Meta-Llama-3.1-8B-Instruct            1     7.0500
vigostral-7b-chat                     1     6.7875
Mistral-7B-Instruct-v0.3              1     6.7500
gemma-2-2b-it                         1     6.4500
French-Alpaca-7B-Instruct_beta        1     5.6875
vigogne-2-7b-chat                     1     5.6625

########## Second turn ##########
                                               score
model                                 turn          
gpt-4o-mini                           2     8.912500
Chocolatine-14B-Instruct-DPO-v1.2     2     8.337500
Chocolatine-3B-Instruct-DPO-Revised   2     7.937500
Chocolatine-3B-Instruct-DPO-v1.2      2     7.862500
Phi-3-medium-4k-instruct              2     7.750000
Chocolatine-14B-Instruct-4k-DPO       2     7.737500
gpt-3.5-turbo                         2     7.679167
Phi-3.5-mini-instruct                 2     7.575000
Daredevil-8B                          2     7.087500
Meta-Llama-3.1-8B-Instruct            2     6.787500
Mistral-7B-Instruct-v0.3              2     6.500000
vigostral-7b-chat                     2     6.162500
gemma-2-2b-it                         2     6.100000
French-Alpaca-7B-Instruct_beta        2     5.487395
vigogne-2-7b-chat                     2     2.775000

########## Average ##########
                                          score
model                                          
gpt-4o-mini                            9.100000
Chocolatine-14B-Instruct-DPO-v1.2      8.475000
Chocolatine-14B-Instruct-4k-DPO        8.187500
Chocolatine-3B-Instruct-DPO-v1.2       8.118750
Phi-3.5-mini-instruct                  8.050000
Phi-3-medium-4k-instruct               7.987500
Chocolatine-3B-Instruct-DPO-Revised    7.962500
gpt-3.5-turbo                          7.908333
Daredevil-8B                           7.487500
Meta-Llama-3.1-8B-Instruct             6.918750
Mistral-7B-Instruct-v0.3               6.625000
vigostral-7b-chat                      6.475000
gemma-2-2b-it                          6.275000
French-Alpaca-7B-Instruct_beta         5.587866
vigogne-2-7b-chat                      4.218750

Usage

You can run this model using my Colab notebook

You can also run Chocolatine using the following code:

import transformers
from transformers import AutoTokenizer

# Format prompt
message = [
    {"role": "system", "content": "You are a helpful assistant chatbot."},
    {"role": "user", "content": "What is a Large Language Model?"}
]
tokenizer = AutoTokenizer.from_pretrained(new_model)
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)

# Create pipeline
pipeline = transformers.pipeline(
    "text-generation",
    model=new_model,
    tokenizer=tokenizer
)

# Generate text
sequences = pipeline(
    prompt,
    do_sample=True,
    temperature=0.7,
    top_p=0.9,
    num_return_sequences=1,
    max_length=200,
)
print(sequences[0]['generated_text'])

Limitations

The Chocolatine model is a quick demonstration that a base model can be easily fine-tuned to achieve compelling performance.
It does not have any moderation mechanism.

  • Developed by: Jonathan Pacifico, 2024
  • Model type: LLM
  • Language(s) (NLP): French, English
  • License: MIT
Downloads last month
2,705
Safetensors
Model size
3.82B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jpacifico/Chocolatine-3B-Instruct-DPO-v1.2

Merges
1 model
Quantizations
5 models

Dataset used to train jpacifico/Chocolatine-3B-Instruct-DPO-v1.2

Collection including jpacifico/Chocolatine-3B-Instruct-DPO-v1.2