Model Card for mlpf-cms-v2.2.0
This model reconstructs particles in a detector, based on the tracks and calorimeter clusters recorded by the detector. The primary difference with respect to v2.2.0 is the inclusion of the sqrt(pt) weight term in the pT and energy regression loss. Additionally, the model has been scaled down to ~5M parameters (previously ~100M) for more efficient inference.
Model Details
The performance is measured with respect to generator-level jets and MET computed from Pythia particles, i.e. the truth-level jets and MET.
Jet performance



MET performance



Model Description
- Developed by: CMS MLPF Team
- Model type: transformer
- License: Apache License
Model Sources
Uses
Direct Use
This model may be used to study the physics and computational performance on ML-based reconstruction in simulation within the CMS collaboration.
Out-of-Scope Use
This model is not intended for physics measurements on real data or for use outside the CMS collaboration.
Bias, Risks, and Limitations
The model has only been trained on simulation data and has not been validated against real data. The model has not been peer reviewed or published in a peer-reviewed journal.
How to Get Started with the Model
Use the code below to get started with the model.
#get the code
git clone https://github.com/jpata/particleflow
cd particleflow
git checkout v2.2.0
#get the models
git clone https://huggingface.co/jpata/particleflow models
Training Details
Trained on 1x A100 for 5 epochs over ~2 days.
Training Data
The following datasets were used:
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/1/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/2/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/3/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/4/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/5/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/6/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/7/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/8/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/9/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/10/2.5.0
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/1/2.5.0
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/2/2.5.0
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/3/2.5.0
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/4/2.5.0
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/5/2.5.0
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/6/2.5.0
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/7/2.5.0
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/8/2.5.0
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/9/2.5.0
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/10/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/1/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/2/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/3/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/4/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/5/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/6/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/7/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/8/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/9/2.5.0
19G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/10/2.5.0
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/1/2.5.0
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/2/2.5.0
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/3/2.5.0
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/4/2.5.0
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/5/2.5.0
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/6/2.5.0
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/7/2.5.0
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/8/2.5.0
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/9/2.5.0
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/10/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/1/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/2/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/3/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/4/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/5/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/6/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/7/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/8/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/9/2.5.0
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/10/2.5.0
5.8G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/1/2.5.0
5.8G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/2/2.5.0
5.7G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/3/2.5.0
5.8G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/4/2.5.0
5.7G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/5/2.5.0
5.7G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/6/2.5.0
5.7G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/7/2.5.0
5.7G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/8/2.5.0
5.7G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/9/2.5.0
5.8G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/10/2.5.0
Training Procedure
#!/bin/bash
#SBATCH --partition gpu
#SBATCH --gres gpu:a100:1
#SBATCH --mem-per-gpu 300G
#SBATCH -o logs/slurm-%x-%j-%N.out
IMG=/home/software/singularity/pytorch.simg:2024-12-03
cd ~/particleflow
ulimit -n 100000
singularity exec -B /scratch/persistent --nv \
--env PYTHONPATH=`pwd` \
--env KERAS_BACKEND=torch \
$IMG python3 mlpf/pipeline.py --gpus 1 \
--data-dir /scratch/persistent/joosep/tensorflow_datasets --config parameters/pytorch/pyg-cms.yaml \
--train --conv-type attention \
--gpu-batch-multiplier 5 --checkpoint-freq 1 --num-workers 8 --prefetch-factor 50 --comet --ntest 1000 --test-datasets cms_pf_qcd_nopu
Evaluation
#!/bin/bash
#SBATCH --partition gpu
#SBATCH --gres gpu:mig:1
#SBATCH --mem-per-gpu 100G
#SBATCH -o logs/slurm-%x-%j-%N.out
IMG=/home/software/singularity/pytorch.simg:2024-08-18
cd ~/particleflow
WEIGHTS=experiments/pyg-cms_20241212_101648_120237/checkpoints/checkpoint-05-3.498507.pth
DATASET=$1
env
singularity exec -B /local -B /scratch/persistent --nv \
--env PYTHONPATH=`pwd` \
--env KERAS_BACKEND=torch \
$IMG python mlpf/pipeline.py --gpus 1 \
--data-dir /scratch/persistent/joosep/tensorflow_datasets --config parameters/pytorch/pyg-cms.yaml \
--test --make-plots --gpu-batch-multiplier 2 --load $WEIGHTS --ntest 10000 --dtype bfloat16 --num-workers 1 --prefetch-factor 10 --test-datasets $DATASET
Citation
Glossary
- PF: particle flow reconstruction
- MLPF: machine learning for particle flow
- CMS: Compact Muon Solenoid
Model Card Contact
Joosep Pata, [email protected]