jpodivin commited on
Commit
b7f66fb
1 Parent(s): b08db0b

End of training

Browse files
Files changed (5) hide show
  1. README.md +3 -1
  2. all_results.json +25 -0
  3. eval_results.json +21 -0
  4. train_results.json +7 -0
  5. trainer_state.json +0 -0
README.md CHANGED
@@ -2,6 +2,8 @@
2
  license: mit
3
  base_model: openmmlab/upernet-swin-small
4
  tags:
 
 
5
  - generated_from_trainer
6
  model-index:
7
  - name: upernet-swin-small-finetuned
@@ -13,7 +15,7 @@ should probably proofread and complete it, then remove this comment. -->
13
 
14
  # upernet-swin-small-finetuned
15
 
16
- This model is a fine-tuned version of [openmmlab/upernet-swin-small](https://huggingface.co/openmmlab/upernet-swin-small) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
  - Loss: 0.2914
19
  - Mean Iou: 0.4182
 
2
  license: mit
3
  base_model: openmmlab/upernet-swin-small
4
  tags:
5
+ - image-segmentation
6
+ - vision
7
  - generated_from_trainer
8
  model-index:
9
  - name: upernet-swin-small-finetuned
 
15
 
16
  # upernet-swin-small-finetuned
17
 
18
+ This model is a fine-tuned version of [openmmlab/upernet-swin-small](https://huggingface.co/openmmlab/upernet-swin-small) on the jpodivin/plantorgans dataset.
19
  It achieves the following results on the evaluation set:
20
  - Loss: 0.2914
21
  - Mean Iou: 0.4182
all_results.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_accuracy_Flower": 0.0,
4
+ "eval_accuracy_Fruit": 0.8589832879841797,
5
+ "eval_accuracy_Leaf": 0.7032167577488816,
6
+ "eval_accuracy_Stem": 0.5504917857429176,
7
+ "eval_accuracy_void": NaN,
8
+ "eval_iou_Flower": 0.0,
9
+ "eval_iou_Fruit": 0.8553766723933364,
10
+ "eval_iou_Leaf": 0.697605663193013,
11
+ "eval_iou_Stem": 0.5380745361554214,
12
+ "eval_iou_void": 0.0,
13
+ "eval_loss": 0.2914386987686157,
14
+ "eval_mean_accuracy": 0.5281729578689947,
15
+ "eval_mean_iou": 0.41821137434835415,
16
+ "eval_median_iou": 0.5380745530128479,
17
+ "eval_overall_accuracy": 0.7341365933972603,
18
+ "eval_runtime": 722.6168,
19
+ "eval_samples_per_second": 1.989,
20
+ "eval_steps_per_second": 0.199,
21
+ "train_loss": 0.4155007145629413,
22
+ "train_runtime": 4721.6055,
23
+ "train_samples_per_second": 3.65,
24
+ "train_steps_per_second": 0.365
25
+ }
eval_results.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_accuracy_Flower": 0.0,
4
+ "eval_accuracy_Fruit": 0.8589832879841797,
5
+ "eval_accuracy_Leaf": 0.7032167577488816,
6
+ "eval_accuracy_Stem": 0.5504917857429176,
7
+ "eval_accuracy_void": NaN,
8
+ "eval_iou_Flower": 0.0,
9
+ "eval_iou_Fruit": 0.8553766723933364,
10
+ "eval_iou_Leaf": 0.697605663193013,
11
+ "eval_iou_Stem": 0.5380745361554214,
12
+ "eval_iou_void": 0.0,
13
+ "eval_loss": 0.2914386987686157,
14
+ "eval_mean_accuracy": 0.5281729578689947,
15
+ "eval_mean_iou": 0.41821137434835415,
16
+ "eval_median_iou": 0.5380745530128479,
17
+ "eval_overall_accuracy": 0.7341365933972603,
18
+ "eval_runtime": 722.6168,
19
+ "eval_samples_per_second": 1.989,
20
+ "eval_steps_per_second": 0.199
21
+ }
train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "train_loss": 0.4155007145629413,
4
+ "train_runtime": 4721.6055,
5
+ "train_samples_per_second": 3.65,
6
+ "train_steps_per_second": 0.365
7
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff