|
import os |
|
import pathlib |
|
from PIL import Image |
|
from functools import partial |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torchvision import transforms |
|
from torchvision.datasets.folder import is_image_file |
|
from tqdm.auto import tqdm |
|
import numpy as np |
|
from skimage.color import rgb2gray |
|
import diffusers |
|
|
|
from libs.engine import ModelState |
|
from libs.metric.lpips_origin import LPIPS |
|
from libs.metric.piq.perceptual import DISTS as DISTS_PIQ |
|
from libs.metric.clip_score import CLIPScoreWrapper |
|
from methods.painter.diffsketchedit import ( |
|
Painter, SketchPainterOptimizer, Token2AttnMixinASDSPipeline, Token2AttnMixinASDSSDXLPipeline) |
|
from methods.painter.diffsketchedit.sketch_utils import ( |
|
log_tensor_img, plt_batch, plt_attn, save_tensor_img, fix_image_scale) |
|
from methods.painter.diffsketchedit.mask_utils import get_mask_u2net |
|
from methods.token2attn.attn_control import AttentionStore, EmptyControl, \ |
|
LocalBlend, AttentionReplace, AttentionRefine, AttentionReweight, get_equalizer |
|
from methods.token2attn.ptp_utils import view_images, get_word_inds |
|
from methods.diffusers_warp import init_diffusion_pipeline, model2res |
|
from methods.diffvg_warp import init_diffvg |
|
from methods.painter.diffsketchedit.process_svg import remove_low_opacity_paths |
|
|
|
|
|
class DiffSketchEditPipeline(ModelState): |
|
def __init__(self, args): |
|
super().__init__(args, ignore_log=True) |
|
|
|
init_diffvg(self.device, True, args.print_timing) |
|
|
|
if args.model_id == "sdxl": |
|
|
|
|
|
|
|
|
|
custom_pipeline = Token2AttnMixinASDSSDXLPipeline |
|
custom_scheduler = diffusers.DPMSolverMultistepScheduler |
|
self.args.cross_attn_res = self.args.cross_attn_res * 2 |
|
elif args.model_id == 'sd21': |
|
custom_pipeline = Token2AttnMixinASDSPipeline |
|
custom_scheduler = diffusers.DDIMScheduler |
|
elif args.model_id == 'sd15': |
|
custom_pipeline = Token2AttnMixinASDSPipeline |
|
custom_scheduler = diffusers.DDIMScheduler |
|
else: |
|
custom_pipeline = Token2AttnMixinASDSPipeline |
|
custom_scheduler = None |
|
|
|
self.diffusion = init_diffusion_pipeline( |
|
self.args.model_id, |
|
custom_pipeline=custom_pipeline, |
|
custom_scheduler=custom_scheduler, |
|
device=self.device, |
|
local_files_only=not args.download, |
|
force_download=args.force_download, |
|
resume_download=args.resume_download, |
|
ldm_speed_up=args.ldm_speed_up, |
|
enable_xformers=args.enable_xformers, |
|
gradient_checkpoint=args.gradient_checkpoint, |
|
) |
|
|
|
|
|
self.cargs = self.args.clip |
|
self.clip_score_fn = CLIPScoreWrapper(self.cargs.model_name, |
|
device=self.device, |
|
visual_score=True, |
|
feats_loss_type=self.cargs.feats_loss_type, |
|
feats_loss_weights=self.cargs.feats_loss_weights, |
|
fc_loss_weight=self.cargs.fc_loss_weight) |
|
|
|
def update_info(self, seed, token_ind, prompt_input): |
|
prompt_dir_name = prompt_input.split(' ') |
|
prompt_dir_name = '_'.join(prompt_dir_name) |
|
|
|
attn_log_ = f"-tk{token_ind}" |
|
logdir_ = f"seed{seed}" \ |
|
f"{attn_log_}" \ |
|
f"-stage={self.args.run_stage}" |
|
logdir_sec_ = f"" |
|
self.args.path_svg = "" |
|
|
|
if self.args.run_stage > 0: |
|
logdir_sec_ = f"{logdir_sec_}-local={self.args.vector_local_edit}" |
|
last_svg_base = os.path.join(self.args.results_path, self.args.edit_type, prompt_dir_name, logdir_[:-1] + str(self.args.run_stage - 1)) |
|
if self.args.run_stage != 1: |
|
last_svg_base += logdir_sec_ |
|
self.args.path_svg = os.path.join(last_svg_base, "visual_best.svg") |
|
self.args.attention_init = False |
|
|
|
logdir_ = f"{prompt_dir_name}" + f"/" + logdir_ + logdir_sec_ |
|
super().__init__(self.args, log_path_suffix=logdir_) |
|
|
|
|
|
self.png_logs_dir = self.results_path / "png_logs" |
|
self.svg_logs_dir = self.results_path / "svg_logs" |
|
self.attn_logs_dir = self.results_path / "attn_logs" |
|
if self.accelerator.is_main_process: |
|
self.png_logs_dir.mkdir(parents=True, exist_ok=True) |
|
self.svg_logs_dir.mkdir(parents=True, exist_ok=True) |
|
self.attn_logs_dir.mkdir(parents=True, exist_ok=True) |
|
|
|
self.g_device = torch.Generator().manual_seed(seed) |
|
|
|
def load_render(self, target_img, attention_map, mask=None): |
|
renderer = Painter(self.args, |
|
num_strokes=self.args.num_paths, |
|
num_segments=self.args.num_segments, |
|
imsize=self.args.image_size, |
|
device=self.device, |
|
target_im=target_img, |
|
attention_map=attention_map, |
|
mask=mask) |
|
return renderer |
|
|
|
def attn_map_normalizing(self, cross_attn_map): |
|
cross_attn_map = 255 * cross_attn_map / cross_attn_map.max() |
|
|
|
cross_attn_map = cross_attn_map.unsqueeze(-1).expand(*cross_attn_map.shape, 3) |
|
|
|
cross_attn_map = cross_attn_map.permute(2, 0, 1).unsqueeze(0) |
|
|
|
cross_attn_map = F.interpolate(cross_attn_map, size=self.args.image_size, mode='bicubic') |
|
cross_attn_map = torch.clamp(cross_attn_map, min=0, max=255) |
|
|
|
cross_attn_map = rgb2gray(cross_attn_map.squeeze(0).permute(1, 2, 0)).astype(np.float32) |
|
|
|
if cross_attn_map.shape[-1] != self.args.image_size and cross_attn_map.shape[-2] != self.args.image_size: |
|
cross_attn_map = cross_attn_map.reshape(self.args.image_size, self.args.image_size) |
|
|
|
cross_attn_map = (cross_attn_map - cross_attn_map.min()) / (cross_attn_map.max() - cross_attn_map.min()) |
|
return cross_attn_map |
|
|
|
def compute_local_edit_maps(self, cross_attn_maps_src_tar, prompts, words, save_path, threshold=0.3): |
|
""" |
|
cross_attn_maps_src_tar: [(res, res, 77), (res, res, 77)] |
|
""" |
|
local_edit_region = np.zeros(shape=(self.args.image_size, self.args.image_size), dtype=np.float32) |
|
for i, (prompt, word) in enumerate(zip(prompts, words)): |
|
ind = get_word_inds(prompt, word, self.diffusion.tokenizer) |
|
assert len(ind) == 1 |
|
ind = ind[0] |
|
|
|
cross_attn_map = cross_attn_maps_src_tar[i][:, :, ind] |
|
cross_attn_map = self.attn_map_normalizing(cross_attn_map) |
|
cross_attn_map_bin = cross_attn_map >= threshold |
|
local_edit_region += cross_attn_map_bin |
|
local_edit_region = (np.clip(local_edit_region, 0, 1) * 255).astype(np.uint8) |
|
local_edit_region = Image.fromarray(local_edit_region, 'L') |
|
local_edit_region.save(save_path, 'PNG') |
|
|
|
def extract_ldm_attn(self, prompts, token_ind, changing_region_words, reweight_word, reweight_weight): |
|
|
|
|
|
if not self.args.attention_init: |
|
controller = EmptyControl() |
|
else: |
|
lb = LocalBlend(prompts=prompts, |
|
words=changing_region_words, tokenizer=self.diffusion.tokenizer, |
|
device=self.device) |
|
|
|
|
|
if self.args.edit_type == "replace": |
|
controller = AttentionReplace(prompts=prompts, |
|
num_steps=self.args.num_inference_steps, |
|
cross_replace_steps=0.4, |
|
self_replace_steps=0.4, |
|
local_blend=lb, |
|
tokenizer=self.diffusion.tokenizer, |
|
device=self.device) |
|
elif self.args.edit_type == "refine": |
|
controller = AttentionRefine(prompts=prompts, |
|
num_steps=self.args.num_inference_steps, |
|
cross_replace_steps=0.8, |
|
self_replace_steps=0.4, |
|
local_blend=lb, |
|
tokenizer=self.diffusion.tokenizer, |
|
device=self.device) |
|
elif self.args.edit_type == "reweight": |
|
equalizer = get_equalizer(self.diffusion.tokenizer, prompts[1:], |
|
reweight_word, reweight_weight) |
|
controller = AttentionReweight(prompts=prompts, |
|
num_steps=self.args.num_inference_steps, |
|
cross_replace_steps=0.8, |
|
self_replace_steps=0.4, |
|
local_blend=lb, |
|
equalizer=equalizer, |
|
|
|
tokenizer=self.diffusion.tokenizer, |
|
device=self.device) |
|
else: |
|
raise Exception('Unknown edit_type:', self.args.edit_type) |
|
|
|
|
|
|
|
height = width = model2res(self.args.model_id) |
|
outputs = self.diffusion(prompt=prompts, |
|
negative_prompt=[self.args.negative_prompt] * len(prompts), |
|
height=height, |
|
width=width, |
|
controller=controller, |
|
num_inference_steps=self.args.num_inference_steps, |
|
guidance_scale=self.args.guidance_scale, |
|
generator=self.g_device) |
|
|
|
print('outputs.images', len(outputs.images)) |
|
for ii, img in enumerate(outputs.images): |
|
if ii == 0: |
|
filename = "ldm_generated_image.png" |
|
target_file = self.results_path / filename |
|
else: |
|
filename = "ldm_generated_image" + str(ii) + ".png" |
|
|
|
target_file_tmp = self.results_path / filename |
|
view_images([np.array(img)], save_image=True, fp=target_file_tmp) |
|
|
|
if self.args.attention_init: |
|
"""ldm cross-attention map""" |
|
cross_attention_maps, tokens = \ |
|
self.diffusion.get_cross_attention(prompts, |
|
controller, |
|
res=self.args.cross_attn_res, |
|
from_where=("up", "down"), |
|
save_path=self.results_path / "cross_attn.png", |
|
select=0) |
|
for ii in range(1, len(outputs.images)): |
|
cross_attn_png_name = "cross_attn" + str(ii) + ".png" |
|
cross_attention_maps_i, tokens_i = \ |
|
self.diffusion.get_cross_attention(prompts, |
|
controller, |
|
res=self.args.cross_attn_res, |
|
from_where=("up", "down"), |
|
save_path=self.results_path / cross_attn_png_name, |
|
select=ii) |
|
|
|
self.print(f"the length of tokens is {len(tokens)}, select {token_ind}-th token") |
|
|
|
self.print(f"origin cross_attn_map shape: {cross_attention_maps.shape}") |
|
|
|
cross_attn_map = cross_attention_maps[:, :, token_ind] |
|
self.print(f"select cross_attn_map shape: {cross_attn_map.shape}\n") |
|
cross_attn_map = self.attn_map_normalizing(cross_attn_map) |
|
|
|
|
|
cross_attention_maps_local_list = [] |
|
for ii in range(len(outputs.images)): |
|
cross_attention_maps_local = \ |
|
self.diffusion.get_cross_attention2(prompts, |
|
controller, |
|
res=self.args.vector_local_edit_attn_res, |
|
from_where=("up", "down"), |
|
select=ii) |
|
cross_attention_maps_local_list.append(cross_attention_maps_local) |
|
|
|
if ii == 0: |
|
continue |
|
|
|
save_name = "cross_attn_local_edit_" + str(self.args.vector_local_edit_attn_res) + "-" + str(ii) + ".png" |
|
|
|
if self.args.edit_type == "replace": |
|
self.compute_local_edit_maps([cross_attention_maps_local_list[ii-1]], [prompts[ii-1]], [changing_region_words[ii][0]], |
|
save_path=self.results_path / save_name, |
|
threshold=self.args.vector_local_edit_bin_threshold_replace) |
|
elif self.args.edit_type == "refine": |
|
self.compute_local_edit_maps([cross_attention_maps_local_list[ii]], [prompts[ii]], [changing_region_words[ii][1]], |
|
save_path=self.results_path / save_name, |
|
threshold=self.args.vector_local_edit_bin_threshold_refine) |
|
elif self.args.edit_type == "reweight": |
|
self.compute_local_edit_maps([cross_attention_maps_local_list[ii-1]], [prompts[ii-1]], [changing_region_words[ii][0]], |
|
save_path=self.results_path / save_name, |
|
threshold=self.args.vector_local_edit_bin_threshold_reweight) |
|
|
|
if self.args.sd_image_only: |
|
return target_file.as_posix(), None |
|
|
|
|
|
|
|
"""ldm self-attention map""" |
|
self_attention_maps, svd, vh_ = \ |
|
self.diffusion.get_self_attention_comp(prompts, |
|
controller, |
|
res=self.args.self_attn_res, |
|
from_where=("up", "down"), |
|
img_size=self.args.image_size, |
|
max_com=self.args.max_com, |
|
save_path=self.results_path) |
|
|
|
|
|
if self.args.mean_comp: |
|
self_attn = np.mean(vh_, axis=0) |
|
self.print(f"use the mean of {self.args.max_com} comps.") |
|
else: |
|
self_attn = vh_[self.args.comp_idx] |
|
self.print(f"select {self.args.comp_idx}-th comp.") |
|
|
|
self_attn = (self_attn - self_attn.min()) / (self_attn.max() - self_attn.min()) |
|
|
|
self_attn_vis = np.copy(self_attn) |
|
self_attn_vis = self_attn_vis * 255 |
|
self_attn_vis = np.repeat(np.expand_dims(self_attn_vis, axis=2), 3, axis=2).astype(np.uint8) |
|
view_images(self_attn_vis, save_image=True, fp=self.results_path / "self-attn-final.png") |
|
|
|
"""attention map fusion""" |
|
attn_map = self.args.attn_coeff * cross_attn_map + (1 - self.args.attn_coeff) * self_attn |
|
|
|
attn_map = (attn_map - attn_map.min()) / (attn_map.max() - attn_map.min()) |
|
|
|
self.print(f"-> fusion attn_map: {attn_map.shape}") |
|
else: |
|
attn_map = None |
|
|
|
return target_file.as_posix(), attn_map |
|
|
|
@property |
|
def clip_norm_(self): |
|
return transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) |
|
|
|
def clip_pair_augment(self, |
|
x: torch.Tensor, |
|
y: torch.Tensor, |
|
im_res: int, |
|
augments: str = "affine_norm", |
|
num_aug: int = 4): |
|
|
|
augment_list = [] |
|
if "affine" in augments: |
|
augment_list.append( |
|
transforms.RandomPerspective(fill=0, p=1.0, distortion_scale=0.5) |
|
) |
|
augment_list.append( |
|
transforms.RandomResizedCrop(im_res, scale=(0.8, 0.8), ratio=(1.0, 1.0)) |
|
) |
|
augment_list.append(self.clip_norm_) |
|
|
|
|
|
augment_compose = transforms.Compose(augment_list) |
|
|
|
x_augs, y_augs = [self.clip_score_fn.normalize(x)], [self.clip_score_fn.normalize(y)] |
|
|
|
for n in range(num_aug): |
|
augmented_pair = augment_compose(torch.cat([x, y])) |
|
x_augs.append(augmented_pair[0].unsqueeze(0)) |
|
y_augs.append(augmented_pair[1].unsqueeze(0)) |
|
xs = torch.cat(x_augs, dim=0) |
|
ys = torch.cat(y_augs, dim=0) |
|
return xs, ys |
|
|
|
def painterly_rendering(self, prompts, token_ind, changing_region_words, reweight_word, reweight_weight): |
|
|
|
self.print(f"prompts: {prompts}") |
|
self.print(f"negative_prompt: {self.args.negative_prompt}") |
|
self.print(f"token_ind: {token_ind}") |
|
self.print(f"changing_region_words: {changing_region_words}") |
|
self.print(f"reweight_word: {reweight_word}") |
|
self.print(f"reweight_weight: {reweight_weight}\n") |
|
if self.args.negative_prompt is None: |
|
self.args.negative_prompt = "" |
|
|
|
log_path = os.path.join(self.results_path.as_posix(), 'log.txt') |
|
with open(log_path, "w") as f: |
|
f.write("prompts: " + str(prompts) + "\n") |
|
f.write("negative_prompt: " + self.args.negative_prompt + "\n") |
|
f.write("token_ind: " + str(token_ind) + "\n") |
|
f.write("changing_region_words: " + str(changing_region_words) + "\n") |
|
f.write("reweight_word: " + str(reweight_word) + "\n") |
|
f.write("reweight_weight: " + str(reweight_weight) + "\n") |
|
f.close() |
|
|
|
|
|
if self.args.run_stage == 0: |
|
target_file, attention_map = self.extract_ldm_attn(prompts, token_ind, changing_region_words, |
|
reweight_word, reweight_weight) |
|
else: |
|
results_base = self.results_path.as_posix() |
|
target_file = os.path.join(results_base[:results_base.find('stage=' + str(self.args.run_stage))] + 'stage=0', "ldm_generated_image" + str(self.args.run_stage) + ".png") |
|
attention_map = None |
|
|
|
if not self.args.sd_image_only: |
|
|
|
|
|
|
|
perceptual_loss_fn = None |
|
if self.args.perceptual.coeff > 0: |
|
if self.args.perceptual.name == "lpips": |
|
lpips_loss_fn = LPIPS(net=self.args.perceptual.lpips_net).to(self.device) |
|
perceptual_loss_fn = partial(lpips_loss_fn.forward, return_per_layer=False, normalize=False) |
|
elif self.args.perceptual.name == "dists": |
|
perceptual_loss_fn = DISTS_PIQ() |
|
|
|
inputs, mask = self.get_target(target_file, |
|
self.args.image_size, |
|
self.results_path, |
|
self.args.u2net_path, |
|
self.args.mask_object, |
|
self.args.fix_scale, |
|
self.device) |
|
inputs = inputs.detach() |
|
self.print("inputs shape: ", inputs.shape) |
|
|
|
|
|
renderer = Painter(self.args, |
|
num_strokes=self.args.num_paths, |
|
num_segments=self.args.num_segments, |
|
imsize=self.args.image_size, |
|
device=self.device, |
|
target_im=inputs, |
|
attention_map=attention_map, |
|
mask=mask, |
|
results_base=self.results_path.as_posix()) |
|
|
|
|
|
img = renderer.init_image(stage=0) |
|
self.print("init_image shape: ", img.shape) |
|
log_tensor_img(img, self.results_path, output_prefix="init_sketch") |
|
|
|
optimizer = SketchPainterOptimizer(renderer, |
|
self.args.lr, |
|
self.args.optim_opacity, |
|
self.args.optim_rgba, |
|
self.args.color_lr, |
|
self.args.optim_width, |
|
self.args.width_lr) |
|
optimizer.init_optimizers() |
|
|
|
|
|
self.print(f"-> Painter points Params: {len(renderer.get_points_params())}") |
|
self.print(f"-> Painter width Params: {len(renderer.get_width_parameters())}") |
|
self.print(f"-> Painter opacity Params: {len(renderer.get_color_parameters())}") |
|
|
|
best_visual_loss, best_semantic_loss = 100, 100 |
|
best_iter_v, best_iter_s = 0, 0 |
|
min_delta = 1e-6 |
|
vid_idx = 1 |
|
|
|
self.print(f"\ntotal optimization steps: {self.args.num_iter}") |
|
with tqdm(initial=self.step, total=self.args.num_iter, disable=not self.accelerator.is_main_process) as pbar: |
|
while self.step < self.args.num_iter: |
|
raster_sketch = renderer.get_image().to(self.device) |
|
|
|
target_prompt = prompts[self.args.run_stage] |
|
|
|
|
|
sds_loss, grad = torch.tensor(0), torch.tensor(0) |
|
if self.step >= self.args.sds.warmup: |
|
grad_scale = self.args.sds.grad_scale if self.step > self.args.sds.warmup else 0 |
|
sds_loss, grad = self.diffusion.score_distillation_sampling( |
|
raster_sketch, |
|
crop_size=self.args.sds.crop_size, |
|
augments=self.args.sds.augmentations, |
|
prompt=[target_prompt], |
|
negative_prompt=[self.args.negative_prompt], |
|
guidance_scale=self.args.sds.guidance_scale, |
|
grad_scale=grad_scale, |
|
t_range=list(self.args.sds.t_range), |
|
) |
|
|
|
|
|
raster_sketch_aug, inputs_aug = self.clip_pair_augment( |
|
raster_sketch, inputs, |
|
im_res=224, |
|
augments=self.cargs.augmentations, |
|
num_aug=self.cargs.num_aug |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
total_visual_loss = torch.tensor(0) |
|
l_clip_fc, l_clip_conv, clip_conv_loss_sum = torch.tensor(0), [], torch.tensor(0) |
|
if self.args.clip.vis_loss > 0: |
|
l_clip_fc, l_clip_conv = self.clip_score_fn.compute_visual_distance( |
|
raster_sketch_aug, inputs_aug, clip_norm=False |
|
) |
|
clip_conv_loss_sum = sum(l_clip_conv) |
|
total_visual_loss = self.args.clip.vis_loss * (clip_conv_loss_sum + l_clip_fc) |
|
|
|
|
|
l_percep = torch.tensor(0.) |
|
if perceptual_loss_fn is not None: |
|
l_perceptual = perceptual_loss_fn(raster_sketch, inputs).mean() |
|
l_percep = l_perceptual * self.args.perceptual.coeff |
|
|
|
|
|
l_tvd = torch.tensor(0.) |
|
if self.cargs.text_visual_coeff > 0: |
|
l_tvd = self.clip_score_fn.compute_text_visual_distance( |
|
raster_sketch_aug, target_prompt |
|
) * self.cargs.text_visual_coeff |
|
|
|
|
|
loss = sds_loss + total_visual_loss + l_percep + l_tvd |
|
|
|
|
|
optimizer.zero_grad_() |
|
loss.backward() |
|
optimizer.step_() |
|
|
|
|
|
|
|
|
|
|
|
if self.args.lr_scheduler: |
|
optimizer.update_lr(self.step, self.args.lr, self.args.decay_steps) |
|
|
|
|
|
pbar.set_description( |
|
f"lr: {optimizer.get_lr():.2f}, " |
|
f"l_total: {loss.item():.4f}, " |
|
f"l_clip_fc: {l_clip_fc.item():.4f}, " |
|
f"l_clip_conv({len(l_clip_conv)}): {clip_conv_loss_sum.item():.4f}, " |
|
f"l_tvd: {l_tvd.item():.4f}, " |
|
f"l_percep: {l_percep.item():.4f}, " |
|
f"sds: {grad.item():.4e}" |
|
) |
|
|
|
|
|
if self.args.make_video and (self.step % self.args.video_frame_freq == 0) \ |
|
and self.accelerator.is_main_process: |
|
log_tensor_img(raster_sketch, output_dir=self.png_logs_dir, |
|
output_prefix=f'frame{vid_idx}', dpi=100) |
|
vid_idx += 1 |
|
|
|
|
|
if self.step % self.args.save_step == 0 and self.accelerator.is_main_process: |
|
|
|
plt_batch(inputs, |
|
raster_sketch, |
|
self.step, |
|
target_prompt, |
|
save_path=self.png_logs_dir.as_posix(), |
|
name=f"iter{self.step}") |
|
|
|
renderer.save_svg(self.svg_logs_dir.as_posix(), f"svg_iter{self.step}") |
|
|
|
|
|
if self.args.log_cross_attn: |
|
controller = AttentionStore() |
|
_, _ = self.diffusion.get_cross_attention([target_prompt], |
|
controller, |
|
res=self.args.cross_attn_res, |
|
from_where=("up", "down"), |
|
save_path=self.attn_logs_dir / f"iter{self.step}.png") |
|
|
|
|
|
if self.step % self.args.eval_step == 0 and self.accelerator.is_main_process: |
|
with torch.no_grad(): |
|
|
|
l_clip_fc, l_clip_conv = self.clip_score_fn.compute_visual_distance( |
|
raster_sketch_aug, inputs_aug, clip_norm=False |
|
) |
|
loss_eval = sum(l_clip_conv) + l_clip_fc |
|
|
|
cur_delta = loss_eval.item() - best_visual_loss |
|
if abs(cur_delta) > min_delta and cur_delta < 0: |
|
best_visual_loss = loss_eval.item() |
|
best_iter_v = self.step |
|
plt_batch(inputs, |
|
raster_sketch, |
|
best_iter_v, |
|
target_prompt, |
|
save_path=self.results_path.as_posix(), |
|
name="visual_best") |
|
renderer.save_svg(self.results_path.as_posix(), "visual_best") |
|
|
|
|
|
loss_eval = self.clip_score_fn.compute_text_visual_distance( |
|
raster_sketch_aug, target_prompt |
|
) |
|
cur_delta = loss_eval.item() - best_semantic_loss |
|
if abs(cur_delta) > min_delta and cur_delta < 0: |
|
best_semantic_loss = loss_eval.item() |
|
best_iter_s = self.step |
|
plt_batch(inputs, |
|
raster_sketch, |
|
best_iter_s, |
|
target_prompt, |
|
save_path=self.results_path.as_posix(), |
|
name="semantic_best") |
|
renderer.save_svg(self.results_path.as_posix(), "semantic_best") |
|
|
|
|
|
if self.step == 0 and self.args.attention_init and self.accelerator.is_main_process: |
|
plt_attn(renderer.get_attn(), |
|
renderer.get_thresh(), |
|
inputs, |
|
renderer.get_inds(), |
|
(self.results_path / "attention_map.jpg").as_posix()) |
|
|
|
self.step += 1 |
|
pbar.update(1) |
|
|
|
|
|
renderer.save_svg(self.svg_logs_dir.as_posix(), "final_svg_tmp") |
|
|
|
if self.args.opacity_delta != 0: |
|
remove_low_opacity_paths(self.svg_logs_dir / "final_svg_tmp.svg", |
|
self.results_path / "final_svg.svg", |
|
self.args.opacity_delta) |
|
|
|
|
|
final_raster_sketch = renderer.get_image().to(self.device) |
|
save_tensor_img(final_raster_sketch, |
|
save_path=self.results_path, |
|
name='final_render') |
|
|
|
|
|
if self.args.make_video: |
|
from subprocess import call |
|
call([ |
|
"ffmpeg", |
|
"-framerate", 24, |
|
"-i", (self.png_logs_dir / "frame%d.png").as_posix(), |
|
"-vb", "20M", |
|
(self.results_path / "out.mp4").as_posix() |
|
]) |
|
|
|
|
|
|
|
def get_target(self, |
|
target_file, |
|
image_size, |
|
output_dir, |
|
u2net_path, |
|
mask_object, |
|
fix_scale, |
|
device): |
|
if not is_image_file(target_file): |
|
raise TypeError(f"{target_file} is not image file.") |
|
|
|
target = Image.open(target_file) |
|
|
|
if target.mode == "RGBA": |
|
|
|
new_image = Image.new("RGBA", target.size, "WHITE") |
|
|
|
new_image.paste(target, (0, 0), target) |
|
target = new_image |
|
target = target.convert("RGB") |
|
|
|
|
|
mask = target |
|
if mask_object: |
|
if pathlib.Path(u2net_path).exists(): |
|
masked_im, mask = get_mask_u2net(target, output_dir, u2net_path, device) |
|
target = masked_im |
|
else: |
|
self.print(f"'{u2net_path}' is not exist, disable mask target") |
|
|
|
if fix_scale: |
|
target = fix_image_scale(target) |
|
|
|
|
|
transforms_ = [] |
|
if target.size[0] != target.size[1]: |
|
transforms_.append(transforms.Resize((image_size, image_size))) |
|
else: |
|
transforms_.append(transforms.Resize(image_size)) |
|
transforms_.append(transforms.CenterCrop(image_size)) |
|
transforms_.append(transforms.ToTensor()) |
|
|
|
|
|
data_transforms = transforms.Compose(transforms_) |
|
target_ = data_transforms(target).unsqueeze(0).to(self.device) |
|
|
|
return target_, mask |
|
|