NTIHackTest-TIESLINEAR

NTIHackTest-TIESLINEAR is a merge of the following models using LazyMergekit:

🧩 Configuration

models:
  - model: FelixChao/WestSeverus-7B-DPO-v2
    # No parameters necessary for base model
  - model: FelixChao/WestSeverus-7B-DPO-v2
    parameters:
      density: [1, 0.7, 0.1]
      weight: [0, 0.3, 0.7, 1]
  - model: CultriX/Wernicke-7B-v9
    parameters:
      density: [1, 0.7, 0.3]
      weight: [0, 0.25, 0.5, 1]
merge_method: dare_linear
base_model: FelixChao/WestSeverus-7B-DPO-v2
parameters:
  int8_mask: true
  normalize: true
  near_tuned_interpolation: true
  nti_t: 0.001
  sparsify:
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - value: 0.5
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "jsfs11/NTIHackTest-TIESLINEAR"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
10
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jsfs11/NTIHackTest-TIESLINEAR