See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.6
bf16: false
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- fc84b16335bd5835_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/fc84b16335bd5835_train_data.json
type:
field_input: content
field_instruction: chapter
field_output: summary_text
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
devices:
- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: jssky/d3c80ab7-7292-44e3-b0b0-1b476f14caa1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 20
micro_batch_size: 1
mlflow_experiment_name: /tmp/fc84b16335bd5835_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
num_gpus: 8
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 4056
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_batch_size: 16
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: d3c80ab7-7292-44e3-b0b0-1b476f14caa1
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d3c80ab7-7292-44e3-b0b0-1b476f14caa1
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
d3c80ab7-7292-44e3-b0b0-1b476f14caa1
This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-Chat-v0.6 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 5.1046
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
7.6743 | 0.0028 | 1 | 7.1293 |
7.7426 | 0.0141 | 5 | 7.0973 |
7.0417 | 0.0283 | 10 | 6.3321 |
5.7705 | 0.0424 | 15 | 5.4978 |
5.6954 | 0.0565 | 20 | 5.1046 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Model tree for jssky/d3c80ab7-7292-44e3-b0b0-1b476f14caa1
Base model
TinyLlama/TinyLlama-1.1B-Chat-v0.6