|
--- |
|
license: apache-2.0 |
|
tags: |
|
- moe |
|
- frankenmoe |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- cognitivecomputations/TinyDolphin-2.8.1-1.1b |
|
- cognitivecomputations/TinyDolphin-2.8.1-1.1b |
|
- cognitivecomputations/TinyDolphin-2.8.1-1.1b |
|
base_model: |
|
- cognitivecomputations/TinyDolphin-2.8.1-1.1b |
|
- cognitivecomputations/TinyDolphin-2.8.1-1.1b |
|
- cognitivecomputations/TinyDolphin-2.8.1-1.1b |
|
--- |
|
|
|
# TinyDolphin-3x-MoE |
|
|
|
TinyDolphin-3x-MoE is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [cognitivecomputations/TinyDolphin-2.8.1-1.1b](https://huggingface.co/cognitivecomputations/TinyDolphin-2.8.1-1.1b) |
|
* [cognitivecomputations/TinyDolphin-2.8.1-1.1b](https://huggingface.co/cognitivecomputations/TinyDolphin-2.8.1-1.1b) |
|
* [cognitivecomputations/TinyDolphin-2.8.1-1.1b](https://huggingface.co/cognitivecomputations/TinyDolphin-2.8.1-1.1b) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
base_model: cognitivecomputations/TinyDolphin-2.8.1-1.1b |
|
gate_mode: hidden |
|
dtype: float16 |
|
experts: |
|
- source_model: cognitivecomputations/TinyDolphin-2.8.1-1.1b |
|
positive_prompts: |
|
- "think step-by-step and follow these instructions" |
|
- "read the following passage, and summarize it in less than 30 words." |
|
- "please answer this question, consider the options carefully, and return the most likely answer." |
|
- source_model: cognitivecomputations/TinyDolphin-2.8.1-1.1b |
|
positive_prompts: ["produce python code"] |
|
- source_model: cognitivecomputations/TinyDolphin-2.8.1-1.1b |
|
positive_prompts: ["What is 2 x 22?"] |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers bitsandbytes accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "jtatman/TinyDolphin-3x-MoE" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, |
|
) |
|
|
|
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] |
|
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |