juanpablomesa's picture
Add new SentenceTransformer model.
183f975 verified
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4012
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 'Extensive messenger RNA editing generates transcript and protein
diversity in genes involved in neural excitability, as previously described, as
well as in genes participating in a broad range of other cellular functions. '
sentences:
- Do cephalopods use RNA editing less frequently than other species?
- GV1001 vaccine targets which enzyme?
- Which event results in the acetylation of S6K1?
- source_sentence: Yes, exposure to household furry pets influences the gut microbiota
of infants.
sentences:
- Can pets affect infant microbiomed?
- What is the mode of action of Thiazovivin?
- What are the effects of CAMK4 inhibition?
- source_sentence: "In children with heart failure evidence of the effect of enalapril\
\ is empirical. Enalapril was clinically safe and effective in 50% to 80% of for\
\ children with cardiac failure secondary to congenital heart malformations before\
\ and after cardiac surgery, impaired ventricular function , valvar regurgitation,\
\ congestive cardiomyopathy, , arterial hypertension, life-threatening arrhythmias\
\ coexisting with circulatory insufficiency. \nACE inhibitors have shown a transient\
\ beneficial effect on heart failure due to anticancer drugs and possibly a beneficial\
\ effect in muscular dystrophy-associated cardiomyopathy, which deserves further\
\ studies."
sentences:
- Which receptors can be evaluated with the [18F]altanserin?
- In what proportion of children with heart failure has Enalapril been shown to
be safe and effective?
- Which major signaling pathways are regulated by RIP1?
- source_sentence: Cellular senescence-associated heterochromatic foci (SAHFS) are
a novel type of chromatin condensation involving alterations of linker histone
H1 and linker DNA-binding proteins. SAHFS can be formed by a variety of cell types,
but their mechanism of action remains unclear.
sentences:
- What is the relationship between the X chromosome and a neutrophil drumstick?
- Which microRNAs are involved in exercise adaptation?
- How are SAHFS created?
- source_sentence: Multicluster Pcdh diversity is required for mouse olfactory neural
circuit assembly. The vertebrate clustered protocadherin (Pcdh) cell surface proteins
are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Although
deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss
of all three clusters (tricluster deletion) led to a severe axonal arborization
defect and loss of self-avoidance.
sentences:
- What are the effects of the deletion of all three Pcdh clusters (tricluster deletion)
in mice?
- what is the role of MEF-2 in cardiomyocyte differentiation?
- How many periods of regulatory innovation led to the evolution of vertebrates?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.8528995756718529
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9264497878359265
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9462517680339463
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.958981612446959
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8528995756718529
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3088165959453088
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18925035360678924
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09589816124469587
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8528995756718529
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9264497878359265
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9462517680339463
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.958981612446959
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9106149406529569
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8946105835073304
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8959864574088351
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.8472418670438473
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9321074964639321
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9476661951909476
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9603960396039604
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8472418670438473
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3107024988213107
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1895332390381895
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09603960396039603
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8472418670438473
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9321074964639321
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9476661951909476
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9603960396039604
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9095270940461391
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8926230888394963
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8939142126576148
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.8359264497878359
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.925035360678925
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9405940594059405
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9533239038189534
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8359264497878359
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.30834512022630833
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1881188118811881
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09533239038189532
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8359264497878359
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.925035360678925
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9405940594059405
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9533239038189534
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9003866854175698
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8828006780269864
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8839707936250328
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.8175388967468176
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9108910891089109
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9264497878359265
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9434229137199435
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8175388967468176
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.30363036303630364
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18528995756718525
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09434229137199433
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8175388967468176
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9108910891089109
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9264497878359265
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9434229137199435
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8862907631297875
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8674047506791496
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8686719824449951
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.7779349363507779
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8868458274398868
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9066478076379066
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9207920792079208
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7779349363507779
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2956152758132956
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1813295615275813
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09207920792079208
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7779349363507779
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8868458274398868
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9066478076379066
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9207920792079208
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8570476590886804
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.835792303720168
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8374166888522218
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("juanpablomesa/bge-base-bioasq-matryoshka")
# Run inference
sentences = [
'Multicluster Pcdh diversity is required for mouse olfactory neural circuit assembly. The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance.',
'What are the effects of the deletion of all three Pcdh clusters (tricluster deletion) in mice?',
'How many periods of regulatory innovation led to the evolution of vertebrates?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.8529 |
| cosine_accuracy@3 | 0.9264 |
| cosine_accuracy@5 | 0.9463 |
| cosine_accuracy@10 | 0.959 |
| cosine_precision@1 | 0.8529 |
| cosine_precision@3 | 0.3088 |
| cosine_precision@5 | 0.1893 |
| cosine_precision@10 | 0.0959 |
| cosine_recall@1 | 0.8529 |
| cosine_recall@3 | 0.9264 |
| cosine_recall@5 | 0.9463 |
| cosine_recall@10 | 0.959 |
| cosine_ndcg@10 | 0.9106 |
| cosine_mrr@10 | 0.8946 |
| **cosine_map@100** | **0.896** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8472 |
| cosine_accuracy@3 | 0.9321 |
| cosine_accuracy@5 | 0.9477 |
| cosine_accuracy@10 | 0.9604 |
| cosine_precision@1 | 0.8472 |
| cosine_precision@3 | 0.3107 |
| cosine_precision@5 | 0.1895 |
| cosine_precision@10 | 0.096 |
| cosine_recall@1 | 0.8472 |
| cosine_recall@3 | 0.9321 |
| cosine_recall@5 | 0.9477 |
| cosine_recall@10 | 0.9604 |
| cosine_ndcg@10 | 0.9095 |
| cosine_mrr@10 | 0.8926 |
| **cosine_map@100** | **0.8939** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.8359 |
| cosine_accuracy@3 | 0.925 |
| cosine_accuracy@5 | 0.9406 |
| cosine_accuracy@10 | 0.9533 |
| cosine_precision@1 | 0.8359 |
| cosine_precision@3 | 0.3083 |
| cosine_precision@5 | 0.1881 |
| cosine_precision@10 | 0.0953 |
| cosine_recall@1 | 0.8359 |
| cosine_recall@3 | 0.925 |
| cosine_recall@5 | 0.9406 |
| cosine_recall@10 | 0.9533 |
| cosine_ndcg@10 | 0.9004 |
| cosine_mrr@10 | 0.8828 |
| **cosine_map@100** | **0.884** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8175 |
| cosine_accuracy@3 | 0.9109 |
| cosine_accuracy@5 | 0.9264 |
| cosine_accuracy@10 | 0.9434 |
| cosine_precision@1 | 0.8175 |
| cosine_precision@3 | 0.3036 |
| cosine_precision@5 | 0.1853 |
| cosine_precision@10 | 0.0943 |
| cosine_recall@1 | 0.8175 |
| cosine_recall@3 | 0.9109 |
| cosine_recall@5 | 0.9264 |
| cosine_recall@10 | 0.9434 |
| cosine_ndcg@10 | 0.8863 |
| cosine_mrr@10 | 0.8674 |
| **cosine_map@100** | **0.8687** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7779 |
| cosine_accuracy@3 | 0.8868 |
| cosine_accuracy@5 | 0.9066 |
| cosine_accuracy@10 | 0.9208 |
| cosine_precision@1 | 0.7779 |
| cosine_precision@3 | 0.2956 |
| cosine_precision@5 | 0.1813 |
| cosine_precision@10 | 0.0921 |
| cosine_recall@1 | 0.7779 |
| cosine_recall@3 | 0.8868 |
| cosine_recall@5 | 0.9066 |
| cosine_recall@10 | 0.9208 |
| cosine_ndcg@10 | 0.857 |
| cosine_mrr@10 | 0.8358 |
| **cosine_map@100** | **0.8374** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 4,012 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 63.38 tokens</li><li>max: 485 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.13 tokens</li><li>max: 49 tokens</li></ul> |
* Samples:
| positive | anchor |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
| <code>Aberrant patterns of H3K4, H3K9, and H3K27 histone lysine methylation were shown to result in histone code alterations, which induce changes in gene expression, and affect the proliferation rate of cells in medulloblastoma.</code> | <code>What is the implication of histone lysine methylation in medulloblastoma?</code> |
| <code>STAG1/STAG2 proteins are tumour suppressor proteins that suppress cell proliferation and are essential for differentiation.</code> | <code>What is the role of STAG1/STAG2 proteins in differentiation?</code> |
| <code>The association between cell phone use and incident glioblastoma remains unclear. Some studies have reported that cell phone use was associated with incident glioblastoma, and with reduced survival of patients diagnosed with glioblastoma. However, other studies have repeatedly replicated to find an association between cell phone use and glioblastoma.</code> | <code>What is the association between cell phone use and glioblastoma?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.8889 | 7 | - | 0.8674 | 0.8951 | 0.8991 | 0.8236 | 0.8996 |
| 1.2698 | 10 | 1.6285 | - | - | - | - | - |
| 1.9048 | 15 | - | 0.8662 | 0.8849 | 0.8951 | 0.8334 | 0.8945 |
| 2.5397 | 20 | 0.7273 | - | - | - | - | - |
| 2.9206 | 23 | - | 0.8681 | 0.8849 | 0.8946 | 0.8362 | 0.8967 |
| **3.5556** | **28** | **-** | **0.8687** | **0.884** | **0.8939** | **0.8374** | **0.896** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.11.5
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->