Final_ManufacturedObjects_STL_model
This model is a fine-tuned version of allenai/scibert_scivocab_uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1199
- Precision: 0.9873
- Recall: 0.9852
- F1: 0.9863
- Accuracy: 0.9825
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1069 | 1.0 | 523 | 0.0714 | 0.9823 | 0.9791 | 0.9807 | 0.9758 |
0.0411 | 2.0 | 1046 | 0.0689 | 0.9873 | 0.9827 | 0.9850 | 0.9810 |
0.0221 | 3.0 | 1569 | 0.0726 | 0.9864 | 0.9845 | 0.9854 | 0.9812 |
0.0132 | 4.0 | 2092 | 0.0867 | 0.9870 | 0.9856 | 0.9863 | 0.9820 |
0.0081 | 5.0 | 2615 | 0.0973 | 0.9868 | 0.9853 | 0.9861 | 0.9820 |
0.0042 | 6.0 | 3138 | 0.1079 | 0.9875 | 0.9852 | 0.9863 | 0.9823 |
0.0031 | 7.0 | 3661 | 0.1179 | 0.9881 | 0.9856 | 0.9868 | 0.9825 |
0.0016 | 8.0 | 4184 | 0.1146 | 0.9881 | 0.9859 | 0.9870 | 0.9833 |
0.0013 | 9.0 | 4707 | 0.1190 | 0.9879 | 0.9856 | 0.9867 | 0.9831 |
0.0009 | 10.0 | 5230 | 0.1199 | 0.9873 | 0.9852 | 0.9863 | 0.9825 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for judithrosell/Final_ManufacturedObjects_STL_model
Base model
allenai/scibert_scivocab_uncased