distilroberta-rbm231k-ep20-op40-phrase5k

This model is a fine-tuned version of judy93536/distilroberta-rbm231k-ep20-op40 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1735
  • Accuracy: 0.9459

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.113335054745316e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.28
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 1.0641 0.6156
1.0561 2.0 500 0.9262 0.6136
1.0561 3.0 750 0.8124 0.6136
0.8474 4.0 1000 0.7271 0.6476
0.8474 5.0 1250 0.6283 0.7237
0.6495 6.0 1500 0.5066 0.7758
0.6495 7.0 1750 0.3436 0.8979
0.3657 8.0 2000 0.2598 0.9189
0.3657 9.0 2250 0.2117 0.9299
0.2023 10.0 2500 0.2022 0.9279
0.2023 11.0 2750 0.1787 0.9329
0.1518 12.0 3000 0.1632 0.9429
0.1518 13.0 3250 0.1883 0.9369
0.1324 14.0 3500 0.1699 0.9409
0.1324 15.0 3750 0.1704 0.9439
0.1225 16.0 4000 0.1755 0.9429
0.1225 17.0 4250 0.1743 0.9439
0.119 18.0 4500 0.1726 0.9459
0.119 19.0 4750 0.1723 0.9459
0.1145 20.0 5000 0.1735 0.9459

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
9
Safetensors
Model size
82.1M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for judy93536/distilroberta-rbm231k-ep20-op40-phrase5k