reactiongif-roberta / README.md
julien-c's picture
julien-c HF staff
Update README.md
9c459c7
|
raw
history blame
1.82 kB
---
license: apache-2.0
tags:
- generated-from-trainer
datasets:
- julien-c/reactiongif
metrics:
- accuracy
model-index:
- name: model
results:
- task:
name: Text Classification
type: text-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.2662102282047272
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unkown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9150
- Accuracy: 0.2662
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 3.0528 | 0.44 | 1000 | 3.0265 | 0.2223 |
| 2.9836 | 0.89 | 2000 | 2.9263 | 0.2332 |
| 2.7409 | 1.33 | 3000 | 2.9041 | 0.2533 |
| 2.7905 | 1.77 | 4000 | 2.8763 | 0.2606 |
| 2.4359 | 2.22 | 5000 | 2.9072 | 0.2642 |
| 2.4507 | 2.66 | 6000 | 2.9230 | 0.2644 |
### Framework versions
- Transformers 4.7.0.dev0
- Pytorch 1.8.1+cu102
- Datasets 1.8.0
- Tokenizers 0.10.3