Whisper-squeezeformer-V9-mutliconv

This model is a fine-tuned version of openai/whisper-small on the LibriSpeech dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1799
  • Wer: 11.3645

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 20
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2500
  • training_steps: 45000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.7863 1.0 2500 3.8844 119.2635
3.9844 2.0 5000 3.7326 132.0431
3.459 3.0 7500 1.2427 72.6510
0.4598 4.0 10000 0.4232 23.4841
0.1931 5.0 12500 0.3479 20.3629
0.1096 6.0 15000 0.3255 17.5574
0.0631 7.0 17500 0.3251 16.8252
0.2473 8.0 20000 0.2452 14.4781
0.1433 9.0 22500 0.2323 13.0782
0.3067 10.0 25000 0.2224 14.5675
0.2769 11.0 27500 0.2015 13.2323
0.1853 12.0 30000 0.2004 14.1015
0.1308 13.0 32500 0.2011 13.2494
0.2435 14.0 35000 0.1830 11.9066
0.1786 15.0 37500 0.1804 12.7948
0.4194 16.0 40000 0.1833 10.3469
0.3283 17.0 42500 0.1818 10.2785
0.2936 18.0 45000 0.1799 11.3645

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.0
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
20
Safetensors
Model size
282M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for jun-han/Whisper-squeezeformer-v2

Finetuned
(2412)
this model