Whisper-squeezeformer-V9-mutliconv
This model is a fine-tuned version of openai/whisper-small on the LibriSpeech dataset. It achieves the following results on the evaluation set:
- Loss: 0.1799
- Wer: 11.3645
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 20
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2500
- training_steps: 45000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
4.7863 | 1.0 | 2500 | 3.8844 | 119.2635 |
3.9844 | 2.0 | 5000 | 3.7326 | 132.0431 |
3.459 | 3.0 | 7500 | 1.2427 | 72.6510 |
0.4598 | 4.0 | 10000 | 0.4232 | 23.4841 |
0.1931 | 5.0 | 12500 | 0.3479 | 20.3629 |
0.1096 | 6.0 | 15000 | 0.3255 | 17.5574 |
0.0631 | 7.0 | 17500 | 0.3251 | 16.8252 |
0.2473 | 8.0 | 20000 | 0.2452 | 14.4781 |
0.1433 | 9.0 | 22500 | 0.2323 | 13.0782 |
0.3067 | 10.0 | 25000 | 0.2224 | 14.5675 |
0.2769 | 11.0 | 27500 | 0.2015 | 13.2323 |
0.1853 | 12.0 | 30000 | 0.2004 | 14.1015 |
0.1308 | 13.0 | 32500 | 0.2011 | 13.2494 |
0.2435 | 14.0 | 35000 | 0.1830 | 11.9066 |
0.1786 | 15.0 | 37500 | 0.1804 | 12.7948 |
0.4194 | 16.0 | 40000 | 0.1833 | 10.3469 |
0.3283 | 17.0 | 42500 | 0.1818 | 10.2785 |
0.2936 | 18.0 | 45000 | 0.1799 | 11.3645 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.4.0
- Datasets 3.2.0
- Tokenizers 0.20.3
- Downloads last month
- 20
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for jun-han/Whisper-squeezeformer-v2
Base model
openai/whisper-small