|
--- |
|
tags: |
|
- autotrain |
|
- text-classification |
|
language: |
|
- en |
|
widget: |
|
- text: "I love AutoTrain 🤗" |
|
datasets: |
|
- jwan2021/autotrain-data-poem-sentiment-analysis |
|
co2_eq_emissions: |
|
emissions: 1.2662388515647711 |
|
--- |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
- Problem type: Multi-class Classification |
|
- Model ID: 1770161500 |
|
- CO2 Emissions (in grams): 1.2662 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.572 |
|
- Accuracy: 0.810 |
|
- Macro F1: 0.590 |
|
- Micro F1: 0.810 |
|
- Weighted F1: 0.787 |
|
- Macro Precision: 0.570 |
|
- Micro Precision: 0.810 |
|
- Weighted Precision: 0.766 |
|
- Macro Recall: 0.611 |
|
- Micro Recall: 0.810 |
|
- Weighted Recall: 0.810 |
|
|
|
|
|
## Usage |
|
|
|
You can use cURL to access this model: |
|
|
|
``` |
|
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/jwan2021/autotrain-poem-sentiment-analysis-1770161500 |
|
``` |
|
|
|
Or Python API: |
|
|
|
``` |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("jwan2021/autotrain-poem-sentiment-analysis-1770161500", use_auth_token=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("jwan2021/autotrain-poem-sentiment-analysis-1770161500", use_auth_token=True) |
|
|
|
inputs = tokenizer("I love AutoTrain", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
``` |