metadata
base_model:
- stabilityai/stable-diffusion-2-inpainting
- stabilityai/stable-diffusion-2-1
pipeline_tag: image-to-image
library_name: diffusers
tags:
- inpaint
- colorization
- stable-diffusion
Example Outputs
Stable Diffusion 2-Based Gray-Inpainting to RGB
This model pipeline demonstrates an advanced workflow for restoring grayscale images, performing inpainting, and converting them to RGB. The pipeline leverages two models based on the Stable Diffusion 2 architecture:
Gray-Inpainting Model: Fills missing regions of a grayscale image using a masked inpainting process based on an autoencoder (AE) instead of a variational autoencoder (VAE).
Gray-to-RGB Conversion Model: Converts the grayscale image (or inpainted output) into a full-color RGB image by adding a residual path in the AE. internel unet directly predicts difference between gray and color image's latent
Code Example
import torch
import numpy as np
from PIL import Image
from diffusers.utils import load_image
from transformers import AutoConfig, AutoModel, ModelCard
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
image_gray = load_image(img_url).resize((512, 512)).convert('L').convert('RGB') # image must be 3 channel
mask_image = load_image(mask_url).resize((512, 512))
mask = (np.array(mask_image)>128)*1
image_gray_masked = Image.fromarray(((1-mask) * np.array(image_gray)).astype(np.uint8))
# Load the gray-inpaint model
gray_inpaintor = AutoModel.from_pretrained(
'jwengr/stable-diffusion-2-gray-inpaint-to-rgb',
subfolder='gray-inpaint',
trust_remote_code=True,
)
Load the gray2rgb model
gray2rgb = AutoModel.from_pretrained(
'jwengr/stable-diffusion-2-gray-inpaint-to-rgb',
subfolder='gray2rgb',
trust_remote_code=True,
)
Move models to GPU
gray_inpaintor.to('cuda')
gray2rgb.to('cuda')
# Enable memory-efficient attention
# gray2rgb.unet.enable_xformers_memory_efficient_attention()
# gray_inpaintor.unet.enable_xformers_memory_efficient_attention()
with torch.autocast('cuda',dtype=torch.bfloat16):
with torch.no_grad():
# each model's input image should be one of PIL.Image, List[PIL.Image], preprocessed tensor (B,3,H,W). Image must be 3 channel
image_gray_restored = gray_inpaintor(image_gray_masked, num_inference_steps=250, seed=10)[0].convert('L') # you can pass 'mask' arg explictly. mask : Tensor (B,1,512,512)
image_restored = gray2rgb(image_gray_restored.convert('RGB'))