jwengr's picture
Update README.md
37ab5a2 verified
|
raw
history blame
3.1 kB
metadata
base_model:
  - stabilityai/stable-diffusion-2-inpainting
  - stabilityai/stable-diffusion-2-1
pipeline_tag: image-to-image
library_name: diffusers
tags:
  - inpaint
  - colorization
  - stable-diffusion

Example Outputs

Step Grayscale Image (Masked) Restored Grayscale Image Fully Restored RGB Image
Image image_gray_masked image_gray_restored image_restored

Stable Diffusion 2-Based Gray-Inpainting to RGB

  1. Gray-Inpainting Model: Fills missing regions of a grayscale image using a masked inpainting diffusion process based on an autoencoder (AE) instead of a variational autoencoder (VAE). It Contains mask dectector to enable restoration without mask information(or you can pass explicitly)

  2. Gray-to-RGB Conversion Model: Converts the grayscale image (or inpainted output) into a full-color RGB image by adding a residual path in the AE. internel unet directly predicts difference between gray and color image's latent


Code Example

import torch
import numpy as np

from PIL import Image
from diffusers.utils import load_image
from transformers import AutoConfig, AutoModel, ModelCard

img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"

image_gray = load_image(img_url).resize((512, 512)).convert('L').convert('RGB') # image must be 3 channel
mask_image = load_image(mask_url).resize((512, 512))
mask = (np.array(mask_image)>128)*1
image_gray_masked = Image.fromarray(((1-mask) * np.array(image_gray)).astype(np.uint8))

# Load the gray-inpaint model
gray_inpaintor = AutoModel.from_pretrained(
    'jwengr/stable-diffusion-2-gray-inpaint-to-rgb', 
    subfolder='gray-inpaint', 
    trust_remote_code=True, 
)

Load the gray2rgb model
gray2rgb = AutoModel.from_pretrained(
    'jwengr/stable-diffusion-2-gray-inpaint-to-rgb', 
    subfolder='gray2rgb', 
    trust_remote_code=True, 
)

Move models to GPU
gray_inpaintor.to('cuda')
gray2rgb.to('cuda')

# Enable memory-efficient attention
# gray2rgb.unet.enable_xformers_memory_efficient_attention()
# gray_inpaintor.unet.enable_xformers_memory_efficient_attention()

with torch.autocast('cuda',dtype=torch.bfloat16):
    with torch.no_grad():
        # each model's input image should be one of PIL.Image, List[PIL.Image], preprocessed tensor (B,3,H,W). Image must be 3 channel
        image_gray_restored = gray_inpaintor(image_gray_masked, num_inference_steps=250, seed=10)[0].convert('L') # you can pass 'mask' arg explicitly. mask : Tensor (B,1,512,512)
        image_restored = gray2rgb(image_gray_restored.convert('RGB'))