jwengr's picture
Update README.md
8ba54e5 verified
|
raw
history blame
3.83 kB
metadata
base_model:
  - stabilityai/stable-diffusion-2-inpainting
  - stabilityai/stable-diffusion-2-1
pipeline_tag: image-to-image

Example Outputs

Step Grayscale Image (Masked) Restored Grayscale Image Fully Restored RGB Image
Image image_gray_masked image_gray_restored image_restored

Stable Diffusion 2-Based Gray-Inpainting to RGB

This model pipeline demonstrates an advanced workflow for restoring grayscale images, performing inpainting, and converting them to RGB. The pipeline leverages two models based on the Stable Diffusion 2 architecture:

  1. Gray-Inpainting Model: Fills missing regions of a grayscale image using a masked inpainting process based on an autoencoder (AE) instead of a variational autoencoder (VAE). This simplifies the model while retaining high-quality reconstruction for the inpainted areas.

  2. Gray-to-RGB Conversion Model: Converts the grayscale image (or inpainted output) into a full-color RGB image by introducing a residual path in the autoencoder (AE). Instead of utilizing a diffusion process, the model directly predicts the latent representation of the color image, enabling efficient and accurate conversion.


Pipeline Workflow

  1. Load Grayscale and Mask Images:

    • Grayscale image input is preprocessed to ensure it has 3 channels (RGB format).
    • A binary mask identifies areas to restore or inpaint.
  2. Apply Gray-Inpainting:

    • The inpainting model takes the grayscale masked image and restores the missing regions using num_inference_steps.
  3. Convert to RGB:

    • The restored grayscale image is then processed by the gray-to-RGB model to produce a full-color output.

Code Example

import torch
import numpy as np

from PIL import Image
from diffusers.utils import load_image
from transformers import AutoConfig, AutoModel, ModelCard

img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"

image_gray = load_image(img_url).resize((512, 512)).convert('L').convert('RGB') # image must be 3 channel
mask_image = load_image(mask_url).resize((512, 512))
mask = (np.array(mask_image)>128)*1
image_gray_masked = Image.fromarray(((1-mask) * np.array(image_gray)).astype(np.uint8))

# Load the gray-inpaint model
gray_inpaintor = AutoModel.from_pretrained(
    'jwengr/stable-diffusion-2-gray-inpaint-to-rgb', 
    subfolder='gray-inpaint', 
    trust_remote_code=True, 
)

Load the gray2rgb model
gray2rgb = AutoModel.from_pretrained(
    'jwengr/stable-diffusion-2-gray-inpaint-to-rgb', 
    subfolder='gray2rgb', 
    trust_remote_code=True, 
)

Move models to GPU
gray_inpaintor.to('cuda')
gray2rgb.to('cuda')

# Enable memory-efficient attention
# gray2rgb.unet.enable_xformers_memory_efficient_attention()
# gray_inpaintor.unet.enable_xformers_memory_efficient_attention()

with torch.autocast('cuda',dtype=torch.bfloat16):
    with torch.no_grad():
        # each model's input image should be one of PIL.Image, List[PIL.Image], preprocessed tensor (B,3,H,W). Image must be 3 channel
        image_gray_restored = gray_inpaintor(image_gray_masked, num_inference_steps=250, seed=10)[0].convert('L') # you can pass 'mask' arg explictly. mask : Tensor (B,1,512,512)
        image_restored = gray2rgb(image_gray_restored.convert('RGB'))